Cladinose Analogues of Sixteen-membered Macrolide Antibiotics

IV. Improved Therapeutic Effects of 4-O-Acyl-L-cladinose Analogues of Sixteen-membered Macrolide Antibiotics

Keitchi Ajito,* Ken-ichi Kurihara, Seiji Shibahara, Osamu Hara, Tsuneo Okonogi, Nobue Kikuchi, Minako Araake, Hisashi Suzuki, Shoji Omoto and Shigeharu Inouye ${ }^{\dagger}$
Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., Morooka-cho, Kohoku-ku, Yokohama 222, Japan

(Received for publication September 24, 1996)

Abstract

Six derivatives of sixteen-membered macrolides possessing 4-O-acyl- α-L-cladinose as a neutral sugar were synthesized via $3^{\prime \prime}$-methylthiomethyl ether intermediates in reasonable yield. Introduction of a methyl group on the $3^{\prime \prime}$-hydroxyl group of midecamycin A_{1} was effective for enhancing its antibacterial activity. All these derivatives exhibited excellent therapeutic effects in mice, and some of them showed improved pharmacokinetics compared with the natural antibiotics (mycarose type) in mice. Facile synthesis of 9-O-acylated analogues are also described.

Sixteen-membered macrolide antibiotics ${ }^{1)}$ produced by several kinds of Streptomyces species are used in the clinic, and the chemically modified derivatives, such as rokitamycin (RKM) ${ }^{2}$) and miocamycin (MOM) ${ }^{3}$ show good therapeutic effects. Although these chemotherapeutics belong to the leucomycin family (platenomycin skeleton), potent tylosin analogues have also been reported ${ }^{4,5}$.

We have been focusing our attention on leucomycin analogues because of its effectiveness and low side effects, and have reported preparations and biological activities of 4 - O-alkyl- α-L-cladinose analogues ${ }^{6 \sim 8)}$. In 1977, Tatsuta et al. ${ }^{99}$) reported synthesis of a cladinose analogue of carbomycin B, compound (1) (Fig. 1) as a pioneer work, and showed that $\mathbf{1}$ had enhanced activity against Mycobacterium smegmatis in comparison with carbomycin B but comparable activity against other bacteria. Another cladinose analogue (2) ${ }^{10)}$ we synthesized, however, exhibited stronger antibacterial activity against many kinds of clinically important organisms than midecamycin A_{3} (Fig. 1). These results suggested that the effect of introducing a methyl group into the $3^{\prime \prime}$-hydroxyl group may be different depending on the parent structure. On the other hand, pharmacokinetics of sixteen-membered derivatives possessing an $s p^{3}$ carbon at the $\mathrm{C}-9$ position have been shown to be much improved in $v i v o^{6,7,11)}$ than those of $s p^{2}$ compounds in mice. These
observations prompted us to prepare and investigate 4-O-acyl-L-cladinose analogues with an $s p^{3}$ carbon at C-9.

In this paper, we wish to report a short synthesis of cladinose analogues ($\mathbf{8 a}$ and $\mathbf{8 b}$) of midecamycin A_{1} (MDM) and josamycin (JM), and facile preparation of their 9 - O-acyl derivatives ($\mathbf{9 a}, 9 \mathbf{9}, \mathbf{1 0 a}$ and 10b). Compound (9a) showed comparable antibacterial activity in vitro to that of MOM, but exhibited excellent therapeutic efficacy in vivo.

Fig. 1. Natural 9-dehydro antibiotics and their cladinose analogues.

[^0]
Chemistry

Since there were some difficulties at an early stage to construct a $3^{\prime \prime}$-methyl ether by direct methylation in the presence of a $4^{\prime \prime}$-acyl group, an unprotected aldehyde group and an unmodified lactone ring ${ }^{\dagger \dagger, 8,12,13)}$, we first selected an indirect method for introducing a methyl group into a tertiary hydroxyl group at the $\mathrm{C}-3^{\prime \prime}$ position to prepare titled compounds ($\mathbf{8 a}$ and $\mathbf{8 b}$) (Scheme 1). Here, we used a methylthiomethyl (MTM) ether as a key intermediate to generate a $3^{\prime \prime}-\mathrm{OCH}_{3}$ group. A $3^{\prime \prime}$-MTM ether of MDM has been already reported ${ }^{14)}$ as a useful semisynthetic analogue of MDM.

An allylic alcohol at the C-9 position of MDM could be chemoselectively protected as its 1-ethoxyethyl (EE) ether, 3a (Scheme 1). Acetylation of a 2^{\prime}-hydroxyl group without basic catalyst gave a tertiary alcohol (4a) quantitatively. Methylthiomethylation with a known method ${ }^{14)}$ afforded an MTM ether (5a) in 70\% yield, which was then deacetylated with methanol to give the key intermediate (6a) in high yield. An MTM ether was reported to be converted into a methyl ether via hetero-
geneous hydrogenolysis ${ }^{15 \sim 17)}$ in the end of the 1960 's. This key compound (6a), however, possesses sensitive functional groups (double bonds and an aldehyde group) which are labile under hydrogenolysis conditions. As expected, usual hydrogenolysis of these MTM ethers easily gave perhydrogenated ($10,11,12,13,18,18-$ hexahydro) $3^{\prime \prime}-\mathrm{OCH}_{3}$ compounds. However, deactivated Raney-Nickel with the optimized method (see experimental) converted 6a to a desired methyl ether (7a) in a moderate yield. In this reaction, a $3^{\prime \prime}$-alcohol (3a) and a $3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{OC}_{2} \mathrm{H}_{5}$ analogue were obtained as by products even in the optimized condition. The EE group of 7a was finally removed to prepare the titled compound, 8a, via acidic conditions. Reduction of the MTM ether to a methoxy group was done at the stage before removal of the EE group, because reduction after removal of EE led to complicated results.
$3^{\prime \prime}$-O-Methyljosamycin ($\mathbf{8 b}$) was also synthesized via the same methodology (Scheme 1). Chemoselective acylation ${ }^{18)}$ of the allylic alcohol of $\mathbf{8 a}$ afforded 9-O-acyl analogues, 9a and 10a.

Scheme 1. Synthesis of compounds $\mathbf{8 a}$ and $\mathbf{8} \mathbf{b}^{\mathbf{a}}$.

[^1][^2]To prepare the above mentioned 9 - O -acyl derivatives $(\mathbf{9}, \mathbf{1 0})$, a more facile synthetic method (Scheme 2) was also used. Fully protected tertiary alcohols (11a, 11b, 12a and 12b) were methylthiomethylated followed by deacetylation at the $\mathrm{C}-2^{\prime}$ position to give key intermediates, 15a, 15b, 16a and 16b. Optimized hydrogenolysis of the MTM ethers consequently afforded 9-O-acyl- $3^{\prime \prime}-O$-methylmidecamycin A_{1} (9a and 10a) and $9-O$-acyl- $3^{\prime \prime}-O$-methyljosamycin (9 b and $\mathbf{1 0 b}$). Thus, this efficient short synthetic route enabled us to prepare these analogues very easily for in vivo studies.

Biological Evaluation

Antibacterial activities in vitro of the novel 4-O-acyl-α-L-cladinosyl derivatives ($\mathbf{8 a}, \mathbf{8 b}, \mathbf{9 a}, \mathbf{9 b}, \mathbf{1 0 a}$ and $\mathbf{1 0 b}$), compared with those of natural antibiotics, MDM, JM, and semisynthetic MOM, are shown in Table 1. As judged from the MIC values, $3^{\prime \prime}$ - O-methylmidecamycin $\mathrm{A}_{1}, \mathbf{8 a}$, exhibited about two-fold higher activity than that of MDM against almost all kinds of organisms compared. On the other hand, $3^{\prime \prime}$-O-methylation of JM did not increase its in vitro activity ($\mathbf{8 b}$ vs. JM). These observations suggested that it might be possible to optimize the $4^{\prime \prime}-O$-acyl group for the highest antibacterial

Scheme 2. Facile synthesis of $9-O$-acyl derivatives ${ }^{\text {a }}$.

${ }^{\text {a }}$ Reagents and conditions: (a) $\mathrm{Ac}_{2} \mathrm{O}$, DMSO, $33^{\circ} \mathrm{C}, 64 \mathrm{~h}$; (b) $\mathrm{MeOH}, 30^{\circ} \mathrm{C}, 16 \mathrm{~h}$; (c) deactivated Raney-Nickel, $\mathrm{EtOH}, 25^{\circ} \mathrm{C}, 20 \mathrm{~min}$. Midecamycin A_{1} derivatives are represented as suffix "a" compounds; $\mathrm{R}_{1}=\mathrm{R}_{2}=$ COEt.
Josamycin derivatives are represented as suffix "b" compounds; $\mathrm{R}_{1}=\mathrm{Ac}, \mathrm{R}_{2}=\mathrm{COCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$.

Table 1. Antibacterial activities of 4-O-acyl-L-cladinose analogues and reference chemotherapeutics (MIC, $\mu \mathrm{g} / \mathrm{ml}$).

Test Organisms	8a	8b	9a	9b	10a	10b	MDM	JM	MOM
Staphylococcus aureus 209P JC-1	0.20	0.10	0.20	0.20	0.39	0.39	0.39	0.20	0.20
S. aureus M133	0.39	0.78	0.78	0.78	1.56	1.56	0.78	0.78	0.78
S. aureus M126	>100	>100	>100	>100	>100	>100	>100	>100	>100
S. aureus MS15026	>100	>100	>100	>100	>100	>100	>100	>100	>100
S. aureus MS15027	0.39	0.78	0.78	0.78	1.56	1.56	0.78	0.78	0.78
S. epidermidis ATCC14990	0.78	0.78	0.78	0.78	1.56	1.56	0.78	0.78	0.78
Micrococcus luteus ATCC9341	0.05	0.05	0.10	0.10	0.10	0.20	0.05	0.05	0.10
Enterococcus faecalisW-73	1.56	3.13	1.56	1.56	3.13	3.13	3.13	3.13	1.56
Streptococcus pneumoniae IP692	0.10	0.20	0.10	0.20	0.20	0.78	0.39	0.10	0.20
S. pneumoniae Type I	0.10	0.20	0.10	0.20	0.39	0.78	0.39	0.10	0.20
S. pyogenes Cook	0.10	0.10	0.20	0.20	0.20	0.20	0.20	0.10	0.20
Escherichia coll NIHJ JC-2	>100	>100	>100	>100	>100	>100	>100	>100	>100
Klebsiella pneumoniae PCI602	>100	>100	>100	>100	>100	>100	>100	>100	>100
Moraxella catarrhalis W-0500	0.78	0.78	1.56	1.56	1.56	1.56	3.13	0.78	1.56
M. catarrhalis W-0506	0.78	0.78	1.56	1.56	6.25	6.25	3.13	0.78	1.56
Haemophilus influenzae 9334	1.56	1.56	3.13	6.25	6.25	12.5	6.25	1.56	6.25
H. influenzae Type b	12.5	12.5	25	50	50	50	25	12.5	25

Table 2. Protective effects of 4-O-acyl α-L-cladinose analogues and MOM on systemic infections in mice.

Organisms	Inoculum size ${ }^{\text {a }}$ (CFU/mouse)	Compound ${ }^{\text {b }}$	$\begin{aligned} & \mathrm{ED} 50^{\mathrm{c}} \\ & (\mathrm{mg} / \mathrm{kg}) \end{aligned}$	MIC ($\mu \mathrm{g} / \mathrm{ml}$)
Staphylococcus aureus Smith I	7.8×10^{6}	8 a	1.7×10^{2}	0.78
		8b	1.1×10^{2}	0.78
		9 a	1.0×10^{2}	0.78
		9 b	0.9×10^{2}	1.56
		10a	1.1×10^{2}	1.56
		10b	1.3×10^{2}	1.56
		MOM	4.6×10^{2}	1.56
Streptococcus pneumoniae DP-I Type I	1.6×10^{2}	8a	$4.9 \times 1{ }^{1}$	0.20
		8b	4.0×10^{1}	0.39
		9 a	1.7×10^{1}	0.20
		9 b	1.8×10^{1}	0.39
		10a	1.5×10^{1}	0.20
		10b	4.5×10^{1}	0.78
		MOM	6.7×10^{1}	0.20

a Administered intraperitoneally with 2.5% gastric mucin.
b Single oral dosing one hour after infection.
${ }^{c}$ ED50, 50% effective dose.
activity. 9-O-Acetylation of $\mathbf{8 a}$ affected only slightly its in vitro activity, and compound (9a) was comparable to MOM in activity.
Next, we examined the duration of activity of 8a and $\mathbf{8 b}$ which were structurally fundamental compounds. Incubation with rat plasma in vitro ${ }^{\dagger \dagger \dagger}$ revealed that the half-life ($\mathrm{T}_{1 / 2}$) of 4-O-acyl-L-cladinose analogues (8a and $\mathbf{8 b}$) was about two-fold times longer than that of 4-O-acyl-L-mycarose counterparts (MDM and JM), respectively (data not shown). It was found furthermore that a deacylated metabolite (4-OH-cladinoside) of $\mathbf{8 a}$ and $\mathbf{8 b}$ was more potent than that ($4-\mathrm{OH}$-mycaroside) ${ }^{19}$) of the natural antibiotic (data will be published in a separate paper). These promising characters of the novel 4-O-acyl-L-cladinose analogues prompted us to investigate their in vivo activity.

The protective effects of these $3^{\prime \prime}$ - O-methyl sixteenmembered macrolide antibiotics on systemic infections in mice are shown in Table 2. As judged from the ED_{50} values, the in vivo activities against Staphylococcus aureus Smith I of these new six analogues, especially $9 \mathbf{9}$ and $\mathbf{9 b}$ were four times or more potent than that of MOM. Compounds 9a, 9b and 10a also were about four times more potent than MOM in protective effects against Streptococcus pneumoniae DP-I type I.

Pharmacokinetics of 9 a as a representative analogue of these new antibiotics were studied preliminarily to clarify the mechanisms of their excellent in vivo effects.

Fig. 2. Time course of serum concentrations of $9 \mathbf{a}$ and MOM after oral dosing ($200 \mathrm{mg} / \mathrm{kg}$) in mice ($\mathrm{n}=4$).

O 9a, - MOM.

Serum concentrations of $\mathbf{9 a}$ and MOM after oral administration are shown in Fig. 2. Compound (9a) exhibited a higher serum level than that of MOM. Furthermore, urinary excretion of 9 a was greatly improved compared with MOM and MDM as shown in Fig. 3. Especially noted was large accumulation of 9a 4 hours after dosing, indicating the delayed excretion of this compound as compared with the references. This analogue (9 a) was distributed in lung more than in serum in mice (Fig. 4), similar to MOM in rat ${ }^{19}$. Metabolic studies in mice after oral administration of compound
${ }^{+\dagger+}$ Metabolic studies using rat plasma were done as described in our previous paper. See ref. 6 or 8.

Fig. 3. Time course of urinary recovery of 9 a, MOM and MDM after oral dosing ($200 \mathrm{mg} / \mathrm{kg}$) in mice ($\mathrm{n}=6$).

- $4 \sim 24$ hours, 图 $2 \sim 4$ hours, $\mathbb{\Delta} 0 \sim 2$ hours.

(9a), revealed that one of the main metabolites was $3^{\prime \prime}$-O-methyl-4"-de- O-propionylmidecamycin A_{1} which was more potent in vitro than $4^{\prime \prime}$-de- O-propionylmidecamycin A_{1}. The excellent in vivo effects of $9 \mathbf{a}$ and its related analogues, compared with those of the $\mathrm{C}-3^{\prime \prime}$ hydroxylcounterparts, are related most probably to with higher serum levels, increased urinary excretion and more potent activity of a metabolite.
In conclusion, a series of sixteen-membered macrolides possessing a $4-O$-acyl- α-L-cladinose moiety were synthesized via $3^{\prime \prime}$-methylthiomethyl intermediates. They showed antibacterial activity in vitro comparable to or two \sim four-fold more potent than the counterparts possessing a $4-O$-acyl- α-L-mycarose moiety, but more potent in vivo activity, supported by better pharmacokinetic profile and a potent metabolite.

Experimental

General Methods

MP's were determined with a Yanagimoto micro melting point apparatus and were uncorrected. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. Mass spectra were obtained on a Hitachi M-80A or M-80B mass spectrometer for EI-MS or FD-, SI-MS, respectively. ${ }^{1} \mathrm{H}$ NMR spectra were measured with a Jeol JNM-GSX 400 NMR spectrometer for 400 MHz in CDCl_{3} using TMS as an internal standard. Silica gel chromatography and preparative TLC were performed on Merck Kieselgel 60 and Merck TLC $60 \mathrm{~F}_{254}$, respectively. In general, the organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporation and concentration were carried out under reduced pressure below $30^{\circ} \mathrm{C}$, unless otherwise noted.

Fig. 4. Time course of distribution of 9 a in serum and lung after oral dosing ($200 \mathrm{mg} / \mathrm{kg}$) in mice $(\mathrm{n}=4)$.

- Serum, \square lung.

Antibacterial Activity In Vitro
Minimum inhibitory concentrations (MICs) were determined by the agar dilution method. Test strains were subjected to seed culture using Sensitivity test broth (STB, Nissui Pharmaceutical) except the strains belonging to the genus Streptococcus, Moraxella and Haemophilus which were cultured on blood agar plate. A $5 \mu \mathrm{l}$ portion of cell suspension of the test strains having about $10^{6} \mathrm{CFU} / \mathrm{ml}$ was inoculated into Sensitivity disk agar (SDA, Nissui Pharmaceutical) supplemented with 5% horse blood in cases of Streptococcus, Moraxella and Haemophilus sp. After incubation at $37^{\circ} \mathrm{C}$ for 20 hours, MICs were determined.

Determination of In Vivo Activity

Six male ICR mice weighing 19 to 21 g were used for each dose. Bacterial cells cultured overnight on heart infusion agar (Nissui Seiyaku) at $37^{\circ} \mathrm{C}$ were suspended in saline, and mixed with an equal volume of 5% gastric mucin (Difco). A 0.5 ml volume of bacterial suspension was inoculated intraperitoneally. Under these conditions, untreated mice died within 48 hours. The test compounds were suspended in 0.2% CMC and given as a single oral dose to the mice one hour after infection. The numbers of survivors were recorded on day 3 after infection. The 50% effective doses were calculated by the probit method ${ }^{20)}$.

Pharmacokinetics Tests in Mice

A test compound was suspended with a 0.2% aqueous solution of CMC to give a concentration of $4.0 \mathrm{mg} / \mathrm{ml}$, and a 1.0 ml portion was orally administered to 4 weeks old male Jcl:ICR mice. Blood was collected from the axillary artery of the mice $0.5,1,2,4$ and 6 hours after the administration of the test compound $(\mathrm{n}=4)$. The collected blood was allowed to stand at $0^{\circ} \mathrm{C}$ for 2 hours and centrifuged at 3000 rpm for 20 minutes to obtain serum. To the serum was added an equivalent volume of $50 \% \mathrm{CH}_{3} \mathrm{CN}-0.05 \mathrm{~m}$ phosphate buffer (pH 7.0). The
concentration of the test compound in the resulting serum sample was measured by a bioassay method using M. luteus ATCC9341 as a test organism.

Separately, $200 \mathrm{mg} / \mathrm{kg}$ of a test compound was orally administered to six mice in the same manner as described above. The mice were put in a metabolic cage MM type (Sugiyamagen Co., Tokyo, Japan) and urine was collected 2, 4 and 24 hours after the administration. The collected urine was filtered through a Millipore filter having a pore size of 0.45 mm and was mixed with an equivalent volume of $50 \% \mathrm{CH}_{3} \mathrm{CN}-0.05 \mathrm{~m}$ phosphate buffer (pH 6.5) to serve as a urine sample. The bioassay was carried out by M. luteus to as described above, and the recovery in the urine was calculated.
The concentration of the test compound in the lung was determined by the published method ${ }^{21)}$.

9-O-(1-Ethoxyethyl)midecamycin A_{1} (3a)

To a solution of MDM ($20.0 \mathrm{~g}, 24.6 \mathrm{mmol}$) and ethyl vinyl ether ($22 \mathrm{ml}, 0.23 \mathrm{~mol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(600 \mathrm{ml})$ was added pyridinium p-toluenesulfonate (PPTS) $(9.40 \mathrm{~g}$, 37.4 mmol) . The solution was kept at room temperature for 16 hours, and then poured into saturated aqueous NaHCO_{3} (2.0 liters). The mixture was extracted with CHCl_{3} (1.8 liters), and the organic layer was successively washed with 5% aqueous NaHCO_{3} (2.0 liters) and brine (2.0 liters). After drying the organic layer, evaporation gave a residue which was purified by silica gel column chromatography ($1.0 \mathrm{~kg}, \mathrm{CHCl}_{3}-\mathrm{MeOH}, 50: 1$) to afford 3a ($20.0 \mathrm{~g}, 92 \%$) as a colorless solid: MP $100 \sim 103^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{21}-61^{\circ}(c 1.0, \mathrm{MeOH})$; EI-MS $m / z 885\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.99$ and $1.00(3 \mathrm{H}, 2 \times \mathrm{d}, 19-\mathrm{H}), 1.12(3 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime \prime}-\mathrm{CH}_{3}\right)$, 1.13 (3H, d, $\left.6^{\prime \prime}-\mathrm{H}\right), 1.18\left(3 \mathrm{H}, \mathrm{t}, 4^{\prime \prime}-\right.$ $\left.\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.44(1 \mathrm{H}, \mathrm{brdt}, 7-\mathrm{H}), 1.85(1 \mathrm{H}, \mathrm{dd}$, $\left.2^{\prime \prime}-\mathrm{Hax}\right), 1.90(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.01\left(1 \mathrm{H}, \mathrm{d}, 2^{\prime \prime}-\mathrm{Heq}\right), 2.15$ $(1 \mathrm{H}$, brdt, $14-\mathrm{H}), 2.28(1 \mathrm{H}$, br d, $2-\mathrm{H}), 2.44$ and 2.46 $\left(2 \mathrm{H}, 2 \times \mathrm{q}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.51\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.63\left(1 \mathrm{H}, \mathrm{brdq}, 3-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.73$ and $2.74(1 \mathrm{H}$, $2 \times \mathrm{dd}, 2-\mathrm{H}), 2.82$ and $2.83(1 \mathrm{H}, 2 \times \mathrm{brdd}, 17-\mathrm{H}), 3.24$ $(1 \mathrm{H}, \quad$ brd, $4-\mathrm{H}), \quad 3.44$ and $3.63(2 \mathrm{H}, \quad 2 \times \mathrm{dq}, 9-$ $\left.\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 3.53\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right), 3.78$ and $3.92(1 \mathrm{H}, 2 \times \mathrm{dd}, 9-\mathrm{H}), 3.87(1 \mathrm{H}$, br d, $5-\mathrm{H}), 4.41(1 \mathrm{H}$, d, $\left.1^{\prime}-\mathrm{H}\right), 4.46\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime \prime}-\mathrm{H}\right), 4.62\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{H}\right), 4.64$ and $4.66\left(1 \mathrm{H}, 2 \times \mathrm{q}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 5.02(1 \mathrm{H}$, ddq, $15-\mathrm{H}), 5.07\left(1 \mathrm{H}, \mathrm{d}, \mathrm{l}^{\prime \prime}-\mathrm{H}\right), 5.13(1 \mathrm{H}$, br d, $3-\mathrm{H}), 5.47$ and $5.56(1 \mathrm{H}, 2 \times \mathrm{dd}, 10-\mathrm{H}), 5.78$ and $5.82(1 \mathrm{H}$, $2 \times$ br ddd, $13-\mathrm{H}), 6.09(1 \mathrm{H}$, br dd, $12-\mathrm{H}), 6.57$ and 6.61 $(1 \mathrm{H}, 2 \times \mathrm{dd}, 11-\mathrm{H}), 9.64$ and $9.65(1 \mathrm{H}, 2 \times \mathrm{brs}, 18-\mathrm{H})$.

9-O-(1-Ethoxyethyl)josamycin (3b)

Reaction of JM with ethyl vinyl ether gave 3b as a colorless solid in 90% yield by a similar procedure to $\mathbf{3 a}$.

3b: MP $105 \sim 108^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{16}-68^{\circ}$ (c $1.0, \mathrm{MeOH}$); EI-MS m/z $899\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.98$ and $0.99(3 \mathrm{H}$, $2 \times \mathrm{d}, 19-\mathrm{H}), 0.98\left(6 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.12$ $\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.14\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.14(3 \mathrm{H}, \mathrm{t}$, $\left.9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 1.19\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right), 1.23$ and $1.25\left(3 \mathrm{H}, 2 \times \mathrm{d}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 1.27(3 \mathrm{H}, \mathrm{d}$,
$16-\mathrm{H}), 1.45(1 \mathrm{H}, \mathrm{br}$ dt, $7-\mathrm{H}), 1.85\left(1 \mathrm{H}\right.$, dd, $\left.2^{\prime \prime}-\mathrm{Hax}\right), 1.90$ $(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.02\left(1 \mathrm{H}, \mathrm{d}, 2^{\prime \prime}-\mathrm{Heq}\right), 2.52\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\right.$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.73$ and $2.75(1 \mathrm{H}, 2 \times \mathrm{dd}, 2-\mathrm{H}), 2.84$ and $2.85(1 \mathrm{H}$, br dd, $17-\mathrm{H}), 3.24(1 \mathrm{H}$, brd, $4-\mathrm{H}), 3.28(1 \mathrm{H}$, $\left.\mathrm{t}, 4^{\prime}-\mathrm{H}\right), 3.35,3.42$ and $3.63\left(2 \mathrm{H}, 3 \times \mathrm{dq}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2}{ }^{-}\right.\right.$ $\left.\left.\mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 3.54\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right), 3.75$ and $3.89(1 \mathrm{H}$, $2 \times \mathrm{dd}, 9-\mathrm{H}), 3.90(1 \mathrm{H}$, br d, $5-\mathrm{H}), 4.43\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right)$, $4.46\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime \prime}-\mathrm{H}\right), 4.63\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{H}\right), 4.63$ and 4.64 $\left(1 \mathrm{H}, 2 \times \mathrm{q}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 5.04(1 \mathrm{H}, \mathrm{ddq}$, $15-\mathrm{H}), 5.07\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right), 5.12(1 \mathrm{H}$, br d, $3-\mathrm{H}), 5.46$ and $5.55(1 \mathrm{H}, 2 \times \mathrm{dd}, 10-\mathrm{H}), 5.76$ and $5.81(1 \mathrm{H}, 2 \times \mathrm{ddd}$, $13-\mathrm{H}), 6.08(1 \mathrm{H}$, br dd, $12-\mathrm{H}), 6.56$ and $6.58(1 \mathrm{H}, 2 \times \mathrm{dd}$, $11-\mathrm{H}), 9.64$ and $9.65(1 \mathrm{H}, 2 \times \mathrm{s}, 18-\mathrm{H})$.

2'-O-Acetyl-9-O-(1-ethoxyethyl)midecamycin A_{1} (4a)

To a solution of $\mathbf{3 a}(12.5 \mathrm{~g}, 14.1 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}$ $(370 \mathrm{ml})$ was added acetic anhydride $(2.7 \mathrm{ml}, 29 \mathrm{mmol})$. The solution was kept at $40^{\circ} \mathrm{C}$ for 16 hours and cooled down to room temperature. After $1 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}(42 \mathrm{ml}$, 42 mmol) was added, the mixture was allowed to stand at room temperature for 10 minutes. It was concentrated to give a residue which was extracted with $\mathrm{CHCl}_{3}(1.0$ liter). The organic layer was washed with saturated aqueous NaHCO_{3} (1.0 liter) and brine (1.2 liters). After drying the organic layer, evaporation gave $4 \mathrm{a}(13.0 \mathrm{~g}$, 99%) as a colorless solid: MP $104 \sim 107^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{21}-64^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}$); SI-MS $m / z 928\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.98$ and $0.99(3 \mathrm{H}, 2 \times \mathrm{d}, 19-\mathrm{H}), 1.12\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.18$ $\left(3 \mathrm{H}, \mathrm{t}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.42(1 \mathrm{H}, \mathrm{brdt}, 7-\mathrm{H}), 1.84(1 \mathrm{H}$, dd, $2^{\prime \prime}$-Hax), $2.00\left(1 \mathrm{H}, \mathrm{d}, 2^{\prime \prime}\right.$-Heq), $2.02(3 \mathrm{H}, \mathrm{s}$, $\left.2^{\prime}-\mathrm{OCOCH}_{3}\right), 2.15(1 \mathrm{H}$, br dt, $14-\mathrm{H}), 2.24(1 \mathrm{H}, \mathrm{brd}, 2-\mathrm{H})$, 2.26 and $2.81(1 \mathrm{H}, 2 \times \mathrm{brdd}, 17 \mathrm{H}), 2.41\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\right.$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.43$ and $2.44\left(2 \mathrm{H}, 2 \times \mathrm{q}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right)$, $2.65\left(1 \mathrm{H}, \mathrm{dq}, 3-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.70(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 2.81$ $(1 \mathrm{H}$, br dd, $17-\mathrm{H}), 3.17(1 \mathrm{H}$, br d, $4-\mathrm{H}), 3.35,3.43,3.49$ and $3.62\left(2 \mathrm{H}, 4 \times \mathrm{dq}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 3.47$ $\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right), 3.75$ and $3.88(1 \mathrm{H}, 2 \times \mathrm{dd}, 9-\mathrm{H}), 3.89$ $(1 \mathrm{H}$, brd, $5-\mathrm{H}), 4.37\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime \prime}-\mathrm{H}\right), 4.61\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right)$, $4.62\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{H}\right), 4.64$ and $4.65(1 \mathrm{H}, 2 \times \mathrm{q}, 9-$ $\left.\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 4.98\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 5.06(1 \mathrm{H}$, d, $\left.1^{\prime \prime}-\mathrm{H}\right), 5.11(1 \mathrm{H}$, br d, $3-\mathrm{H}), 5.45$ and $5.54(1 \mathrm{H}, 2 \times \mathrm{dd}$, $10-\mathrm{H}), 5.79$ and $5.83(1 \mathrm{H}, 2 \times \mathrm{ddd}, 13-\mathrm{H}), 6.05(1 \mathrm{H}$, br dd, $12-\mathrm{H}), 6.57$ and $6.61(1 \mathrm{H}, 2 \times \mathrm{dd}, 11-\mathrm{H}), 9.62$ and 9.63 $(1 \mathrm{H}, 2 \times \mathrm{brs}, 18-\mathrm{H})$.

2'-O-Acetyl-9-O-(1-ethoxyethyl)josamycin (4b)

Reaction of 3b with acetic anhydride gave 4b as a colorless solid in 96% yield by a similar procedure to $\mathbf{4 a}$.
4b: MP $110 \sim 113^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{19}-70^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$; FD-MS $m / z 942\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.86(1 \mathrm{H}$, br ddd, $7-\mathrm{H}), 0.98\left(6 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.12(3 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime \prime}-\mathrm{CH}_{3}\right), \quad 1.13\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), \quad 1.14(3 \mathrm{H}, \quad \mathrm{t}, \quad 9-$ $\left.\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 1.18\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right), 1.22$ and 1.24 $\left(3 \mathrm{H}, 2 \times \mathrm{d}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 1.26(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H})$, $1.43(1 \mathrm{H}$, br dt, $7-\mathrm{H}), 1.84\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime \prime}-\mathrm{Hax}\right), 2.01(1 \mathrm{H}$, d, $2^{\prime \prime}$-Heq), $2.02\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{OCOCH}_{3}\right), 2.12(1 \mathrm{H}, \mathrm{dt}$, $14-\mathrm{H}), 2.25(1 \mathrm{H}$, br d, $2-\mathrm{H}), 2.29\left(3 \mathrm{H}\right.$, s, $\left.3-\mathrm{OCOCH}_{3}\right)$, $2.41\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.45(1 \mathrm{H}, \mathrm{brdt}, 14-\mathrm{H}), 2.69$
$\left(1 \mathrm{H}, \mathrm{t}, 3^{\prime}-\mathrm{H}\right), 2.72(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 2.83(1 \mathrm{H}, \mathrm{br} d \mathrm{~d}, 17-\mathrm{H})$, $3.18(1 \mathrm{H}$, br d, $4-\mathrm{H}), 3.34,3.41$ and $3.63(2 \mathrm{H}, 3 \times \mathrm{dq}, 9-$ $\left.\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 3.49\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right), 3.72$ and $3.86(1 \mathrm{H}, 2 \times \mathrm{dd}, 9-\mathrm{H}), 3.91(1 \mathrm{H}$, brd, $5-\mathrm{H}), 4.38(1 \mathrm{H}$, dq, $\left.5^{\prime \prime}-\mathrm{H}\right), 4.99\left(1 \mathrm{H}\right.$, dd, $\left.2^{\prime}-\mathrm{H}\right), 5.01(1 \mathrm{H}$, ddq, $15-\mathrm{H})$, $5.06\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right), 5.10(1 \mathrm{H}$, br d, $3-\mathrm{H}), 5.46$ and 5.54 $(1 \mathrm{H}, 2 \times \mathrm{dd}, 10-\mathrm{H}), 5.76$ and $5.81(1 \mathrm{H}, 2 \times \mathrm{ddd}, 13-\mathrm{H})$, $6.05(1 \mathrm{H}$, br dd, $12-\mathrm{H}), 6.55$ and $6.58(1 \mathrm{H}, 2 \times \mathrm{dd}, 11-\mathrm{H})$, 9.63 and $9.64(1 \mathrm{H}, 2 \times \mathrm{s}, 18-\mathrm{H})$.

2'-O-Acetyl-9-O-(1-ethoxyethyl)-3"-O-(methylthiomethyl)midecamycin A_{1} (5a)

A solution of $4 \mathbf{a}(3.05 \mathrm{~g}, 3.29 \mathrm{mmol})$ in dry DMSO (91 ml) and acetic anhydride $(9.1 \mathrm{ml}, 96 \mathrm{mmol}$) was kept at $33^{\circ} \mathrm{C}$ for 64 hours, then poured into toluene $(600 \mathrm{ml})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(600 \mathrm{ml})$ three times, and dried. Evaporation gave a residue which was purified by silica gel column chromatography (300 g , hexane-EtOAc, $1: 1$) to afford $\mathbf{5 a}(2.27 \mathrm{~g}, 70 \%)$ as a colorless solid and recovered $\mathbf{4 a}$ ($549 \mathrm{mg}, 18 \%$). This diastereoisomeric mixture $\mathbf{5 a}$ was separated by preparative TLC (hexane-EtOAc, 1:1) to obtain a less polar isomer $(5 \mathrm{aH})(1.34 \mathrm{~g})$ and a more polar isomer (5 aL) $(0.93 \mathrm{~g})$.

5aH: MP $94 \sim 96^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{19}-71^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$; FD-MS m/z $988\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.85(1 \mathrm{H}, \mathrm{brdt}$, $7-\mathrm{H}), 0.98(3 \mathrm{H}, \mathrm{d}, 19-\mathrm{H}), 1.05\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.14(3 \mathrm{H}$, t, $\left.9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 1.14\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right), 1.17(3 \mathrm{H}$, s, $\left.3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.18\left(3 \mathrm{H}, \mathrm{t}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.21(3 \mathrm{H}, \mathrm{t}$, $\left.3-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.22\left(3 \mathrm{H}, \mathrm{d}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right)$, $1.26(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H}), 1.41(1 \mathrm{H}$, brdt, $7-\mathrm{H}), 1.68(1 \mathrm{H}, \mathrm{dd}$, $2^{\prime \prime}$-Hax), $1.87(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.01\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{OCOCH}_{3}\right)$, $2.15(1 \mathrm{H}, \mathrm{dt}, 14-\mathrm{H}), 2.20\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 2.24$ $(1 \mathrm{H}$, brd, $2-\mathrm{H}), 2.25\left(1 \mathrm{H}, \mathrm{d}, 2^{\prime \prime}-\mathrm{Heq}\right), 2.42(2 \mathrm{H}, \mathrm{q}$, $\left.4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.43\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.50$ and $2.65\left(2 \mathrm{H}, 2 \times \mathrm{dq}, 3-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.68\left(1 \mathrm{H}, \mathrm{t}, 3^{\prime}-\mathrm{H}\right)$, $2.72(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 2.83(1 \mathrm{H}, \mathrm{brdd}, 17-\mathrm{H}), 3.16(1 \mathrm{H}, \mathrm{t}$, $\left.4^{\prime}-\mathrm{H}\right), 3.17(1 \mathrm{H}$, br d, $4-\mathrm{H}), 3.26\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime}-\mathrm{H}\right), 3.42$ and $3.50\left(2 \mathrm{H}, 2 \times \mathrm{dq}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 3.49(3 \mathrm{H}, \mathrm{s}$, $\left.4-\mathrm{OCH}_{3}\right), 3.87(1 \mathrm{H}$, br d, $5-\mathrm{H}), 3.88(1 \mathrm{H}, \mathrm{dd}, 9-\mathrm{H}), 4.51$ $\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 4.56\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime \prime}-\mathrm{H}\right), 4.60(1 \mathrm{H}$, $\left.\mathrm{d}, 1^{\prime}-\mathrm{H}\right), 4.64,4.65\left(2 \mathrm{H}, 2 \times \mathrm{d}, 4^{\prime \prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right)$, $4.81\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right), 4.92\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 4.99(1 \mathrm{H}, \mathrm{ddq}$, $15-\mathrm{H}), 5.11(1 \mathrm{H}$, br d, $3-\mathrm{H}), 5.45(1 \mathrm{H}, \mathrm{dd}, 10-\mathrm{H}), 5.82$ $(1 \mathrm{H}$, ddd, $13-\mathrm{H}), 6.06(1 \mathrm{H}$, br dd, $12-\mathrm{H}), 6.61(1 \mathrm{H}, \mathrm{dd}$, $11-\mathrm{H}), 9.62(1 \mathrm{H}$, brs, $18-\mathrm{H})$.

5aL: MP $90 \sim 94^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{19}-87^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}$); FD-MS $m / z 988\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.87(1 \mathrm{H}, \mathrm{brdt}$, $7-\mathrm{H}), 0.98(3 \mathrm{H}, \mathrm{d}, 19-\mathrm{H}), 1.05\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.14(3 \mathrm{H}$, $\left.\mathrm{t}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 1.14\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right), 1.17(3 \mathrm{H}$, $\left.\mathrm{s}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.18\left(3 \mathrm{H}, \mathrm{t}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.23(3 \mathrm{H}, \mathrm{t}$, $\left.3-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.25\left(3 \mathrm{H}, \mathrm{d}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)-\right.$ $\left.\mathrm{CH}_{3}\right), 1.26(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H}), 1.43(1 \mathrm{H}, \mathrm{brdt}, 7-\mathrm{H}), 1.69(1 \mathrm{H}$, dd, $2^{\prime \prime}$-Hax), $1.86(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.01\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{OCOCH}_{3}\right)$, $2.15(1 \mathrm{H}, \mathrm{dt}, 14-\mathrm{H}), 2.20\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 2.25$ $(1 \mathrm{H}, \operatorname{brd}, 2-\mathrm{H}), 2.26\left(1 \mathrm{H}, \mathrm{d}, 2^{\prime \prime}-\mathrm{Heq}\right), 2.42(2 \mathrm{H}, \mathrm{q}$, $\left.4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.43\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.52$ and $2.65\left(2 \mathrm{H}, 2 \times \mathrm{dq}, 3-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.68\left(1 \mathrm{H}, \mathrm{t}, 3^{\prime}-\mathrm{H}\right)$,
$2.72(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 2.84(1 \mathrm{H}$, brdd, $17-\mathrm{H}), 3.16(1 \mathrm{H}, \mathrm{t}$, $\left.4^{\prime}-\mathrm{H}\right), 3.18(1 \mathrm{H}$, br d, $4-\mathrm{H}), 3.26\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime}-\mathrm{H}\right), 3.35$ and $3.63\left(2 \mathrm{H}, 2 \times \mathrm{dq}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 3.49(3 \mathrm{H}, \mathrm{s}$, $\left.4-\mathrm{OCH}_{3}\right), 3.74(1 \mathrm{H}, \mathrm{dd}, 9-\mathrm{H}), 3.87(1 \mathrm{H}, \mathrm{brd}, 5-\mathrm{H}), 4.51$ $\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 4.57\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime \prime}-\mathrm{H}\right), 4.60(1 \mathrm{H}$, d, $\left.1^{\prime}-\mathrm{H}\right), 4.64,4.65\left(2 \mathrm{H}, 2 \times \mathrm{d}, 4^{\prime \prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right)$, $4.65\left(1 \mathrm{H}, \mathrm{q}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 4.81\left(1 \mathrm{H}, \mathrm{d}, \mathrm{l}^{\prime \prime}-\mathrm{H}\right)$, $4.92\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 5.00(1 \mathrm{H}, \mathrm{ddq}, 15-\mathrm{H}), 5.11(1 \mathrm{H}, \mathrm{br}$ d, $3-\mathrm{H}), 5.54(1 \mathrm{H}, \mathrm{dd}, 10-\mathrm{H}), 5.80(1 \mathrm{H}$, ddd, $13-\mathrm{H}), 6.06$ $(1 \mathrm{H}$, brdd, $12-\mathrm{H}), 6.58(1 \mathrm{H}, \mathrm{dd}, 11-\mathrm{H}), 9.63(1 \mathrm{H}, \mathrm{brs}$, $18-\mathrm{H})$.
$2^{\prime}-O$-Acetyl-9-O-(1-ethoxyethyl)-3"-O-(methylthiomethyl)josamycin (5b)

Reaction of $\mathbf{4 b}$ with DMSO gave $\mathbf{5 b}$ as a colorless solid in 66% yield by a similar procedure to $\mathbf{5 a}$.

5b: MP $102 \sim 105^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{16}-87^{\circ}$ (c $1.0, \mathrm{CHCl}_{3}$); FD-MS $m / z 1002\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.85(1 \mathrm{H}$, br ddd, $7-\mathrm{H}), 0.98\left(6 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.99(3 \mathrm{H}$, d, $19-\mathrm{H}), 1.05\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.14(3 \mathrm{H}$, brt, $9-$ $\left.\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 1.14\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right), 1.18(3 \mathrm{H}$, $\left.\mathrm{s}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.22$ and $1.24\left(3 \mathrm{H}, 2 \times \mathrm{d}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2}-\right.\right.$ $\left.\left.\mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 1.26(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H}), 1.43(1 \mathrm{H}, \mathrm{brdt}, 7-\mathrm{H})$, $1.68\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime \prime}-\mathrm{Hax}\right), 1.87(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.01(3 \mathrm{H}, \mathrm{s}$, $\left.2^{\prime}-\mathrm{OCOCH}_{3}\right), 2.15(1 \mathrm{H}, \mathrm{dt}, \quad 14-\mathrm{H}), 2.20(3 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}\right)_{3}, 2.25(1 \mathrm{H}$, brd, $2-\mathrm{H}), 2.42(6 \mathrm{H}$, s, $\left.3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.45(1 \mathrm{H}, \mathrm{brdt}, 14-\mathrm{H}), 2.68\left(1 \mathrm{H}, \mathrm{t}, 3^{\prime}-\mathrm{H}\right)$, 2.72 and $2.73(1 \mathrm{H}, 2 \times \mathrm{dd}, 2-\mathrm{H}), 2.85(1 \mathrm{H}, \mathrm{brdd}, 17-\mathrm{H})$, $3.16\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right), 3.18(1 \mathrm{H}$, brd, $4-\mathrm{H}), 3.27(1 \mathrm{H}, \mathrm{dq}$, $\left.5^{\prime}-\mathrm{H}\right), 3.35,3.41$ and $3.63\left(2 \mathrm{H}, 3 \times \mathrm{dq}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2}-\right.\right.$ $\left.\left.\mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 3.50$ and $3.51\left(3 \mathrm{H}, 2 \times \mathrm{s}, 4-\mathrm{OCH}_{3}\right), 3.73$ and $3.86(1 \mathrm{H}, 2 \times \mathrm{dd}, 9-\mathrm{H}), 3.89(1 \mathrm{H}$, br d, $5-\mathrm{H}), 4.50(1 \mathrm{H}$, d, $\left.3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 4.57\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime \prime}-\mathrm{H}\right), 4.64,4.65(2 \mathrm{H}$, $\left.2 \times \mathrm{d}, 4^{\prime \prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 4.81\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right), 4.93$ $\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 5.01(1 \mathrm{H}$, ddq, $15-\mathrm{H}), 5.10(1 \mathrm{H}$, br d, $3-\mathrm{H}), 5.10\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 5.45$ and $5.54(1 \mathrm{H}, 2 \times \mathrm{dd}, 10-\mathrm{H})$, 5.76 and $5.82(1 \mathrm{H}, 2 \times \mathrm{ddd}, 13-\mathrm{H}), 6.05(1 \mathrm{H}, \mathrm{br}$ dd, $12-\mathrm{H})$, 6.54 and $6.58(1 \mathrm{H}, 2 \times \mathrm{dd}, 11-\mathrm{H}), 9.63$ and $9.64(1 \mathrm{H}, \mathrm{s}$, 18-H).

9-O-(1-Ethoxyethyl)-3"-O-(methylthiomethyl)midecamycin (6a)

A solution of $5 \mathbf{a}(500 \mathrm{mg}, 0.506 \mathrm{mmol})$ in MeOH $(15 \mathrm{ml})$ was allowed to stand at $30^{\circ} \mathrm{C}$ for 16 hours. Evaporation gave a residue which was purified by preparative TLC (hexane-EtOAc, 1:1) to afford 6a $(440 \mathrm{mg}, 92 \%)$ as a colorless solid.

An isomer of 6 a derived from 5 aH : MP $95 \sim 98^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{19}-55^{\circ}(c 1.0, \mathrm{MeOH}) ;$ SI-MS $m / z 946\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.93(1 \mathrm{H}$, br ddd, $7-\mathrm{H}), 0.98(3 \mathrm{H}, \mathrm{d}, 19-\mathrm{H}), 1.08$ $\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.53(1 \mathrm{H}, \mathrm{brdt}, 7-\mathrm{H}), 1.75\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime \prime}-\mathrm{Hax}\right)$, $1.89(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.19\left(3 \mathrm{H}, \mathrm{s}, 3 "-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 2.26$ $(1 \mathrm{H}, \mathrm{brd}, 2-\mathrm{H}), 2.28\left(1 \mathrm{H}, \mathrm{d}, 2^{\prime \prime}-\mathrm{Heq}\right), 2.42(2 \mathrm{H}, \mathrm{q}$, $\left.4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.51$ and $2.64(2 \mathrm{H}, 2 \times \mathrm{dq}, 3-$ $\left.\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.58\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.75(1 \mathrm{H}, \mathrm{dd}$, $2-\mathrm{H}), 2.85(1 \mathrm{H}$, brdd, $17-\mathrm{H}), 3.26(1 \mathrm{H}$, br d, $4-\mathrm{H}), 3.28$ $\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime}-\mathrm{H}\right), 3.41\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right), 3.43$ and $3.50(2 \mathrm{H}$, $\left.2 \times \mathrm{dq}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 3.57\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right)$,
$3.88(1 \mathrm{H}$, br d, $5-\mathrm{H}), 3.90(1 \mathrm{H}$, dd, $9-\mathrm{H}), 4.51(1 \mathrm{H}, \mathrm{d}$, $\left.1^{\prime}-\mathrm{H}\right), 4.52\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 4.56\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime \prime}-\mathrm{H}\right)$, $4.64\left(1 \mathrm{H}, \mathrm{q}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 4.65,4.66(2 \mathrm{H}$, $\left.2 \times \mathrm{d}, 4^{\prime \prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 4.92\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right), 5.01$ $(1 \mathrm{H}, \mathrm{ddq}, 15-\mathrm{H}), 5.13(1 \mathrm{H}$, brd, $3-\mathrm{H}), 5.46(1 \mathrm{H}$, dd, $10-\mathrm{H}), 5.83(1 \mathrm{H}$, ddd, $13-\mathrm{H}), 6.10(1 \mathrm{H}$, br dd, $12-\mathrm{H}), 6.62$ $(1 \mathrm{H}, \mathrm{dd}, 11-\mathrm{H}), 9.63(1 \mathrm{H}$, br s, $18-\mathrm{H})$.

An isomer of 6 a derived from 5aL: MP $91 \sim 93^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{19}-73^{\circ}(c 1.0, \mathrm{MeOH})$; SI-MS $m / z 946\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.94(1 \mathrm{H}$, br ddd, $7-\mathrm{H}), 1.08\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.53$ $(1 \mathrm{H}$, brdt, $7-\mathrm{H}), 1.75\left(1 \mathrm{H}\right.$, dd, $\left.2^{\prime \prime}-\mathrm{Hax}\right), 1.88(1 \mathrm{H}, \mathrm{m}$, $8-\mathrm{H}), 2.19\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 2.25(1 \mathrm{H}$, br dd, $17-\mathrm{H})$, $2.26(1 \mathrm{H}, \mathrm{brd}, 2-\mathrm{H}), 2.28\left(1 \mathrm{H}, \mathrm{d}, 2^{\prime \prime}-\mathrm{Heq}\right), 2.42(2 \mathrm{H}, \mathrm{q}$, $\left.4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.52$ and $2.65(2 \mathrm{H}, 2 \times \mathrm{dq}, 3-$ $\left.\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.59\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.75(1 \mathrm{H}$, dd, $2-\mathrm{H}), 2.85(1 \mathrm{H}, \mathrm{brdd}, 17-\mathrm{H}), 3.26(1 \mathrm{H}, \mathrm{brd}, 4-\mathrm{H})$, $3.28\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime}-\mathrm{H}\right), 3.36$ and $3.63(2 \mathrm{H}, 2 \times \mathrm{dq}, 9-$ $\left.\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 3.41\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right), 3.57(3 \mathrm{H}, \mathrm{s}$, $\left.4-\mathrm{OCH}_{3}\right), 3.76(1 \mathrm{H}, \mathrm{dd}, 9-\mathrm{H}), 3.88(1 \mathrm{H}$, br d, $5-\mathrm{H}), 4.51$ $\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 4.52\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 4.56(1 \mathrm{H}$, dq, $\left.5^{\prime \prime}-\mathrm{H}\right), 4.65,4.66\left(2 \mathrm{H}, 2 \times \mathrm{d}, 4^{\prime \prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right)$, $4.92\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right), 5.02(1 \mathrm{H}$, ddq, $15-\mathrm{H}), 5.13(1 \mathrm{H}$, br d, $3-\mathrm{H}), 5.55(1 \mathrm{H}, \mathrm{dd}, 10-\mathrm{H}), 5.80(1 \mathrm{H}$, ddd, $13-\mathrm{H}), 6.09$ $(1 \mathrm{H}, \mathrm{br} d \mathrm{~d}, 12-\mathrm{H}), 6.59(1 \mathrm{H}, \mathrm{dd}, 11-\mathrm{H}), 9.64(1 \mathrm{H}, \mathrm{brs}$, $18-\mathrm{H})$.

9-O-(1-Ethoxyethyl)-3"-O-(methylthiomethyl)josamycin $\overline{A_{1}(6 b)}$

Reaction of $\mathbf{5 b}$ with MeOH gave $\mathbf{6 b}$ as a colorless solid in 92% yield by a similar procedure to $6 \mathbf{a}$.

6b: MP $105 \sim 107^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{18}-75^{\circ}$ (c 1.0 , MeOH); FD-MS $m / z 959\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.92(1 \mathrm{H}$, br ddd, $7-\mathrm{H}), 0.98\left(6 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.08(3 \mathrm{H}, \mathrm{d}$, $\left.6^{\prime \prime}-\mathrm{H}\right), 1.14\left(3 \mathrm{H}\right.$, brt, $\left.9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 1.15(3 \mathrm{H}$, d, $\left.6^{\prime}-\mathrm{H}\right), 1.20\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.22$ and $1.24(3 \mathrm{H}, 2 \times \mathrm{d}$, $\left.9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 1.27(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H}), 1.54(1 \mathrm{H}$, brdt, $7-\mathrm{H}), 1.74\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime \prime}-\mathrm{Hax}\right), 1.89(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H})$, $2.13(1 \mathrm{H}, \mathrm{dt}, 14-\mathrm{H}), 2.20\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 2.26$ $(1 \mathrm{H}$, br d, $2-\mathrm{H}), 2.28\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OCOCH}_{3}\right), 2.46(1 \mathrm{H}$, br dt, $14-\mathrm{H}), 2.57\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.75$ and $2.76(1 \mathrm{H}$, $2 \times \mathrm{dd}, 2-\mathrm{H}), 2.88(1 \mathrm{H}, \mathrm{brdd}, 17-\mathrm{H}), 3.58(3 \mathrm{H}, \mathrm{s}, 4-$ $\left.\mathrm{OCH}_{3}\right), 3.63\left(2 \mathrm{H}, \mathrm{q}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 3.73$ and $3.88(1 \mathrm{H}, 2 \times \mathrm{dd}, 9-\mathrm{H}), 3.91(1 \mathrm{H}$, brd, $5-\mathrm{H}), 4.51(1 \mathrm{H}$, $\left.\mathrm{d}, 1^{\prime}-\mathrm{H}\right), 4.52\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 4.56(1 \mathrm{H}, \mathrm{dq}$, $\left.5^{\prime \prime}-\mathrm{H}\right), 4.65,4.66\left(2 \mathrm{H}, 2 \times \mathrm{d}, 4^{\prime \prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 4.92$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{l}^{\prime \prime}-\mathrm{H}\right), 5.03(1 \mathrm{H}$, ddq, $15-\mathrm{H}), 5.11(1 \mathrm{H}, \mathrm{brd}, 3-\mathrm{H})$, 5.46 and $5.55(1 \mathrm{H}, 2 \times \mathrm{dd}, 10-\mathrm{H}), 5.77$ and $5.82(1 \mathrm{H}$, $2 \times$ ddd, $13-\mathrm{H}), 6.09(1 \mathrm{H}$, brdd, $12-\mathrm{H}), 6.56$ and 6.60 $(1 \mathrm{H}, 2 \times \mathrm{dd}, 11-\mathrm{H}), 9.64$ and $9.65(1 \mathrm{H}, 2 \times \mathrm{s}, 18-\mathrm{H})$.

9-O-(1-Ethoxyethyl)-3"-O-methylmidecamycin A_{1} (7a)

Raney-Nickel (7.5 ml) suspended in $\mathrm{H}_{2} \mathrm{O}$ was washed with $\mathrm{H}_{2} \mathrm{O}(12 \mathrm{ml})$ twice, and then washed with acetone $(12 \mathrm{ml})$ three times below $25^{\circ} \mathrm{C}$ to be deactivated. Next, it was resuspended in EtOH $(3.5 \mathrm{ml})$ twice to be used in this reaction.

To a solution of $\mathbf{6 a}(300 \mathrm{mg}, 0.317 \mathrm{mmol})$ in EtOH
$(12 \mathrm{ml})$ was added deactivated Raney-Nickel prepared above with $\mathrm{EtOH}(4.0 \mathrm{ml})$. The mixture was vigorously stirred at room temperature for 20 minutes exactly. Insoluble matter was filtered off, and it was washed with a mixed solvent (15 ml , EtOH-28\% $\mathrm{NH}_{4} \mathrm{OH}, 99: 1$) twice. Combined filtrate and washings were concentrated to give a residue which was purified with preparative TLC (toluene - acetone, $3: 1$) to afford $7 \mathrm{a}(174 \mathrm{mg}, 61 \%$) as a colorless solid.

An isomer of $\mathbf{7 a}$ derived from $\mathbf{5 a H}:$ MP $90 \sim 93^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{19}-43^{\circ}(c 1.0, \mathrm{MeOH})$; SI-MS $m / z 900\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.93(1 \mathrm{H}$, br ddd, $7-\mathrm{H}), 0.98(3 \mathrm{H}, \mathrm{d}, 19-\mathrm{H}), 1.08$ $\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.11\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.14(3 \mathrm{H}, \mathrm{t}, 9-$ $\left.\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 1.16\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right), 1.20(3 \mathrm{H}, \mathrm{t}$, $\left.4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.22\left(3 \mathrm{H}, \mathrm{d}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)-\right.$ $\left.\mathrm{CH}_{3}\right), 1.23\left(3 \mathrm{H}, \mathrm{t}, 3-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.26(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H})$, $1.54(1 \mathrm{H}$, brdt, $7-\mathrm{H}), 1.67\left(1 \mathrm{H}\right.$, dd, $\left.2^{\prime \prime}-\mathrm{Hax}\right), 1.89(1 \mathrm{H}$, $\mathrm{m}, 8-\mathrm{H}), 2.13(1 \mathrm{H}$, br t, $6-\mathrm{H}), 2.17(1 \mathrm{H}, \mathrm{dt}, 14-\mathrm{H}), 2.26$ $(1 \mathrm{H}, \operatorname{brd}, 2-\mathrm{H}), 2.28(1 \mathrm{H}$, brdd, $17-\mathrm{H}), 2.29(1 \mathrm{H}, \mathrm{d}$, $\left.2^{\prime \prime}-\mathrm{Heq}\right), 2.43$ and $2.44\left(2 \mathrm{H}, 2 \times \mathrm{q}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right)$, 2.50 and $2.64\left(2 \mathrm{H}, 2 \times \mathrm{dq}, 3-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.60(6 \mathrm{H}$, $\left.\mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.74(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 2.85(1 \mathrm{H}, \mathrm{br} d \mathrm{~d}, 17-\mathrm{H})$, $3.26(1 \mathrm{H}, \mathrm{brd}, 4-\mathrm{H}), 3.26\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{OCH}_{3}\right), 3.29(1 \mathrm{H}$, $\left.\mathrm{dq}, 5^{\prime}-\mathrm{H}\right), 3.43$ and $3.50\left(2 \mathrm{H}, 2 \times \mathrm{dq}, 9-\mathrm{OCH}\left(\mathrm{OCH} \mathbf{2}^{-}\right.\right.$ $\left.\left.\mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 3.46\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right), 3.57\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right), 3.88$ $(1 \mathrm{H}, \operatorname{brd}, 5-\mathrm{H}), 3.90(1 \mathrm{H}, \mathrm{dd}, 9-\mathrm{H}), 4.53\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right)$, $4.54\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime \prime}-\mathrm{H}\right), 4.64\left(1 \mathrm{H}, \mathrm{q}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)\right.$ $\left.\mathrm{CH}_{3}\right), 4.73\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{H}\right), 4.93\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right), 5.00(1 \mathrm{H}$, ddq, $15-\mathrm{H}), 5.13(1 \mathrm{H}$, brd, $3-\mathrm{H}), 5.46(1 \mathrm{H}$, dd, $10-\mathrm{H})$, $5.83(1 \mathrm{H}$, ddd, $13-\mathrm{H}), 6.10(1 \mathrm{H}$, br dd, $12-\mathrm{H}), 6.62(1 \mathrm{H}$, dd, $11-\mathrm{H}), 9.64(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 18-\mathrm{H})$.

An isomer of 7 a derived from 5 aL : MP $87 \sim 90^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{19}-65^{\circ}(c .1 .0, \mathrm{MeOH}) ;$ SI-MS $m / z 900\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.94(1 \mathrm{H}$, br ddd, $7-\mathrm{H}), 1.08\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.10$ $\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.14\left(3 \mathrm{H}, \mathrm{t}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right)$, $1.16\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right), 1.18\left(3 \mathrm{H}, \mathrm{t}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.23$ $\left(3 \mathrm{H}, \mathrm{t}, 3-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.25\left(3 \mathrm{H}, \mathrm{d}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2}-\right.\right.$ $\left.\left.\mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 1.26(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H}), 1.55(1 \mathrm{H}, \mathrm{brdt}, 7-\mathrm{H})$, $1.67\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime \prime}-\mathrm{Hax}\right), 1.88(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.13(1 \mathrm{H}, \mathrm{brt}$, $6-\mathrm{H}), 2.16(1 \mathrm{H}, \mathrm{dt}, 14-\mathrm{H}), 2.25(1 \mathrm{H}, \mathrm{br} d \mathrm{~d}, 17-\mathrm{H}), 2.26$ $(1 \mathrm{H}$, brd, $2-\mathrm{H}), 2.29\left(1 \mathrm{H}, \mathrm{d}, 2^{\prime \prime}-\mathrm{Heq}\right), 2.42\left(1 \mathrm{H}, \mathrm{t}, 3^{\prime}-\mathrm{H}\right)$, 2.43 and $2.44\left(2 \mathrm{H}, 2 \times \mathrm{q}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.52$ and $2.64\left(2 \mathrm{H}, 2 \times \mathrm{dq}, \quad 3-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.57(6 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.75(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 2.86(1 \mathrm{H}$, br dd, $17-\mathrm{H})$, $3.21\left(1 \mathrm{H}\right.$, dd, $\left.2^{\prime}-\mathrm{H}\right), 3.26(1 \mathrm{H}$, brd, $4-\mathrm{H}), 3.26(3 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime \prime}-\mathrm{OCH}_{3}\right), 3.29\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime}-\mathrm{H}\right), 3.36$ and $3.63(2 \mathrm{H}, 2 \times \mathrm{dq}$, $\left.9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 3.45\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right), 3.57(3 \mathrm{H}$, $\left.\mathrm{s}, 4-\mathrm{OCH}_{3}\right), 3.75(1 \mathrm{H}, \mathrm{dd}, 9-\mathrm{H}), 3.88(1 \mathrm{H}, \mathrm{brd}, 5-\mathrm{H})$, $4.52\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 4.55\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime \prime}-\mathrm{H}\right), 4.72(1 \mathrm{H}, \mathrm{d}$, $\left.4^{\prime \prime}-\mathrm{H}\right), 4.92\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right), 5.01(1 \mathrm{H}, \mathrm{ddq}, 15-\mathrm{H}), 5.13$ $(1 \mathrm{H}, \operatorname{brd}, 3-\mathrm{H}), 5.55(1 \mathrm{H}, \mathrm{dd}, 10-\mathrm{H}), 5.80(1 \mathrm{H}$, ddd, $13-\mathrm{H}), 6.09(1 \mathrm{H}$, br dd, $12-\mathrm{H}), 6.59(1 \mathrm{H}, \mathrm{dd}, 11-\mathrm{H}), 9.64$ ($1 \mathrm{H}, \mathrm{brs}, 18-\mathrm{H}$).

9-O-(1-Ethoxyethyl)-3"-O-methyljosamycin (7b)

Reaction of 6b with Raney-Nickel gave 7b as a colorless solid in 48% yield by a similar procedure to 7 a .

7b: MP $98 \sim 101^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{16}-62^{\circ}(c 1.0, \mathrm{MeOH})$; SI-MS
$m / z 914\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.97$ (6H, d, 4"$\left.\mathrm{OCOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.08\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.10(3 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.14\left(3 \mathrm{H}\right.$, brt, $\left.9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 1.16$ $\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right), 1.22$ and $1.24\left(3 \mathrm{H}, 2 \times \mathrm{d}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2^{-}}\right.\right.$ $\left.\left.\mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 1.26(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H}), 1.55(1 \mathrm{H}, \mathrm{brdt}, 7-\mathrm{H})$, $1.89(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.13(1 \mathrm{H}, \mathrm{dt}, 14-\mathrm{H}), 2.28(3 \mathrm{H}, \mathrm{s}$, $\left.3-\mathrm{OCOCH}_{3}\right), 2.46(1 \mathrm{H}$, br dt, $14-\mathrm{H}), 2.58\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\right.$ $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.75$ and $2.76(1 \mathrm{H}, 2 \times \mathrm{dd}, 2-\mathrm{H}), 2.88(1 \mathrm{H}$, br dd, $17-\mathrm{H}), 3.26\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{OCH}_{3}\right), 3.35,3.42,3.50$ and $3.63\left(2 \mathrm{H}, 4 \times \mathrm{dq}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 3.46(1 \mathrm{H}, \mathrm{t}$, $\left.4^{\prime}-\mathrm{H}\right), 3.58\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right), 3.73$ and $3.88(1 \mathrm{H}, 2 \times \mathrm{dd}$, $9-\mathrm{H}), 3.91(1 \mathrm{H}$, br d, $5-\mathrm{H}), 4.52\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 4.54(1 \mathrm{H}$, $\left.\mathrm{dq}, 5^{\prime \prime}-\mathrm{H}\right), 4.63$ and $4.64\left(1 \mathrm{H}, 2 \times \mathrm{q}, 9-\mathrm{OCH}\left(\mathrm{OCH}_{2}-\right.\right.$ $\left.\left.\mathrm{CH}_{3}\right) \mathrm{CH}_{3}\right), 4.73\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{H}\right), 4.93\left(1 \mathrm{H}, \mathrm{d}, \mathrm{l}^{\prime \prime}-\mathrm{H}\right), 5.03$ $(1 \mathrm{H}, \mathrm{ddq}, 15-\mathrm{H}), 5.12(1 \mathrm{H}$, br d, $3-\mathrm{H}), 5.46$ and $5.55(1 \mathrm{H}$, $2 \times \mathrm{dd}, 10-\mathrm{H}), 5.77$ and $5.82(1 \mathrm{H}, 2 \times \mathrm{ddd}, 13-\mathrm{H}), 6.09$ $(1 \mathrm{H}$, br dd, $12-\mathrm{H}), 6.57$ and $6.59(1 \mathrm{H}, 2 \times \mathrm{dd}, 11-\mathrm{H}), 9.64$ and $9.66(1 \mathrm{H}, 2 \times \mathrm{s}, 18-\mathrm{H})$.

3"-O-Methylmidecamycin A_{1} (8a)

To a solution of $7 \mathbf{a}\left(60.0 \mathrm{mg}, 6.67 \times 10^{-5} \mathrm{~mol}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{ml})$ was added $5 \%(\mathrm{v} / \mathrm{v})$ aqueous acetic acid $(4.5 \mathrm{ml})$. The solution was allowed to stand at room temperature for 16 hours. Evaporation gave a residue which was extracted with $\mathrm{CHCl}_{3}(10 \mathrm{ml})$. The organic layer was washed with saturated aqueous NaHCO_{3} $(10 \mathrm{ml})$ three times, brine (10 ml) and dried. Concentration gave a residue which was purified by preparative TLC $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 10: 1\right)$ to afford $\mathbf{8 a}(50.0 \mathrm{mg}, 91 \%)$ as a colorless solid: MP $116 \sim 120^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{15}-65^{\circ}(c 1.0$, MeOH); SI-MS $m / z 828\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.92(1 \mathrm{H}$, br ddd, $7-\mathrm{H}), 0.98(3 \mathrm{H}, \mathrm{d}, 19-\mathrm{H}), 1.07\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.10$ $\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.16\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right), 1.17(3 \mathrm{H}, \mathrm{t}$, $\left.4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.22\left(3 \mathrm{H}, \mathrm{t}, 3-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.26$ $(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H}), 1.54(1 \mathrm{H}, \mathrm{brdt}, 7-\mathrm{H}), 1.66(1 \mathrm{H}, \mathrm{dd}$, $2^{\prime \prime}$-Hax), $1.89(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.15(1 \mathrm{H}, \mathrm{dt}, 14-\mathrm{H}), 2.24$ (1H, brd, $2-\mathrm{H}), 2.29\left(1 \mathrm{H}, \mathrm{d}, 2^{\prime \prime}-\mathrm{Heq}\right), 2.32(1 \mathrm{H}$, brdd, $17-\mathrm{H}), 2.42\left(1 \mathrm{H}, \mathrm{t}, 3^{\prime}-\mathrm{H}\right), 2.42$ and $2.43(2 \mathrm{H}, 2 \times \mathrm{q}$, $\left.4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.51$ and $2.64(2 \mathrm{H}, 2 \times \mathrm{dq}, 3-$ $\left.\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.57\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.76(1 \mathrm{H}, \mathrm{dd}$, $2-\mathrm{H}), 2.86(1 \mathrm{H}$, br dd, $17-\mathrm{H}), 3.22\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 3.26$ $(1 \mathrm{H}$, brd, $4-\mathrm{H}), 3.26\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{OCH}_{3}\right), 3.29(1 \mathrm{H}, \mathrm{dq}$, $\left.5^{\prime}-\mathrm{H}\right), 3.44\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right), 3.57\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right), 3.88(1 \mathrm{H}$, brd, $5-\mathrm{H}), 4.07(1 \mathrm{H}, \mathrm{dd}, 9-\mathrm{H}), 4.52\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 4.54$ $\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime \prime}-\mathrm{H}\right), 4.72\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{H}\right), 4.92\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right)$, $5.03(1 \mathrm{H}, \mathrm{ddq}, 15-\mathrm{H}), 5.14(1 \mathrm{H}, \mathrm{br}$ d, $3-\mathrm{H}), 5.61(1 \mathrm{H}, \mathrm{dd}$, $10-\mathrm{H}), 5.79(1 \mathrm{H}$, ddd, $13-\mathrm{H}), 6.08(1 \mathrm{H}$, br dd, $12-\mathrm{H}), 6.67$ $(1 \mathrm{H}, \mathrm{dd}, 11-\mathrm{H}), 9.63(1 \mathrm{H}, \mathrm{brs}, 18-\mathrm{H})$.

3"-O-Methyljosamycin ($\mathbf{8 b}$)

Reaction of $\mathbf{7 b}$ with acetic acid gave $\mathbf{8 b}$ as a colorless solid in 84% yield by a similar procedure to $\mathbf{8 a}$.
8b: MP $115 \sim 117^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{17}-65^{\circ}(c 1.0, \mathrm{MeOH})$; SI-MS $m / z 842\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.92(1 \mathrm{H}$, br ddd, $7-\mathrm{H}), 0.97$ $\left(6 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.98(3 \mathrm{H}, \mathrm{d}, 19-\mathrm{H}), 1.08$ $\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.10\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.16\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right)$, $1.26(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H}), 1.58(1 \mathrm{H}, \mathrm{brdt}, 7-\mathrm{H}), 1.66(1 \mathrm{H}, \mathrm{dd}$, $2^{\prime \prime}$-Hax), $1.89(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.28\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OCOCH}_{3}\right)$,
$2.33(1 \mathrm{H}$, br dd, $17-\mathrm{H}), 2.41\left(1 \mathrm{H}, \mathrm{t}, 3^{\prime}-\mathrm{H}\right), 2.46(1 \mathrm{H}, \mathrm{brdt}$, $14-\mathrm{H}), 2.57\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.74(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 2.88$ $(1 \mathrm{H}$, br dd, $17-\mathrm{H}), 3.21\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 3.25(3 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime \prime}-\mathrm{OCH}_{3}\right), 3.26(1 \mathrm{H}$, br d, $4-\mathrm{H}), 3.29\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime}-\mathrm{H}\right), 3.46$ $\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right), 3.58\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right), 3.90(1 \mathrm{H}, \mathrm{brd}, 5-\mathrm{H})$, $4.05(1 \mathrm{H}, \mathrm{dd}, 9-\mathrm{H}), 4.52\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 4.72\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{H}\right)$, $4.93\left(1 \mathrm{H}\right.$, brd, $\left.1^{\prime \prime}-\mathrm{H}\right), 5.04(1 \mathrm{H}, \mathrm{ddq}, 15-\mathrm{H}), 5.12(1 \mathrm{H}$, br d, $3-\mathrm{H}), 5.54\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime \prime}-\mathrm{H}\right), 5.62(1 \mathrm{H}, \mathrm{dd}, 10-\mathrm{H}), 5.76$ $(1 \mathrm{H}$, ddd, $13-\mathrm{H}), 6.08(1 \mathrm{H}$, br dd, $12-\mathrm{H}), 6.64(1 \mathrm{H}, \mathrm{dd}$, $11-\mathrm{H}), 9.64(1 \mathrm{H}, \mathrm{s}, 18-\mathrm{H})$.

9-O-Acetyl-3"-O-methylmidecamycin A_{1} (9a) from 8a
To a solution of $\mathbf{8 a}\left(60.0 \mathrm{mg}, 7.25 \times 10^{-5} \mathrm{~mol}\right)$ in toluene $(3.0 \mathrm{ml})$ was successively added anhydrous pyridine ($26 \mathrm{ml}, 0.32 \mathrm{mmol}$) and acetyl chloride (23 ml , $0.32 \mathrm{mmol})$. After stirring at room temperature for one hour, $\mathrm{Et}_{3} \mathrm{~N}(19 \mathrm{ml}, 0.27 \mathrm{mmol})$ and $\mathrm{EtOAc}(30 \mathrm{ml})$ was added. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$ twice, dried and concentrated to give a residue which was purified by preparative $\mathrm{TLC}\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 12: 1\right)$ to afford $9 \mathbf{a}(24.9 \mathrm{mg}, 79 \%)$ as colorless needles: MP $118 \sim 121^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{24}-60^{\circ}(c 1.0, \mathrm{MeOH})$; EI-MS $m / z 869$ $\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.93(1 \mathrm{H}$, brddd, $7-\mathrm{H}), 0.96(3 \mathrm{H}, \mathrm{d}$, $19-\mathrm{H}), 1.08\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.10\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.16(3 \mathrm{H}$, $\left.\mathrm{d}, 6^{\prime}-\mathrm{H}\right), 1.18\left(3 \mathrm{H}, \mathrm{t}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.21(3 \mathrm{H}, \mathrm{t}$, $\left.3-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.26(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H}), 1.57(1 \mathrm{H}, \mathrm{brdt}$, $7-\mathrm{H}), 1.67\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime \prime}-\mathrm{Hax}\right), 2.02\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{OCOCH}_{3}\right)$, $2.17(1 \mathrm{H}, \mathrm{dt}, 14-\mathrm{H}), 2.26(1 \mathrm{H}, \mathrm{brd}, 2-\mathrm{H}), 2.30(1 \mathrm{H}, \mathrm{d}$, $\left.2^{\prime \prime}-\mathrm{Heq}\right), 2.41\left(1 \mathrm{H}, \mathrm{t}, 3^{\prime}-\mathrm{H}\right), 2.43$ and $2.44(2 \mathrm{H}, 2 \times \mathrm{q}$, $\left.4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.51$ and $2.67(2 \mathrm{H}, 2 \times \mathrm{dq}, 3-$ $\left.\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.57\left(6 \mathrm{H}, \mathrm{s}, 3{ }^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.58(1 \mathrm{H}$, br dd, $17-\mathrm{H}), 2.74(1 \mathrm{H}$, dd, $2-\mathrm{H}), 2.83(1 \mathrm{H}$, br dd, $17-\mathrm{H})$, $3.20\left(1 \mathrm{H}\right.$, dd, $\left.2^{\prime}-\mathrm{H}\right), 3.25(1 \mathrm{H}$, brd, $4-\mathrm{H}), 3.26(3 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime \prime}-\mathrm{OCH}_{3}\right), 3.28\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime}-\mathrm{H}\right), 3.45\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right), 3.57$ $\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right), 3.93(1 \mathrm{H}$, br d, $5-\mathrm{H}), 4.51\left(1 \mathrm{H}, \mathrm{d}, \mathrm{l}^{\prime}-\mathrm{H}\right)$, $4.54\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime \prime}-\mathrm{H}\right), 4.72\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{H}\right), 4.93(1 \mathrm{H}, \mathrm{d}$, $\left.1^{\prime \prime}-\mathrm{H}\right), 4.98(1 \mathrm{H}$, ddq, $15-\mathrm{H}), 5.08(1 \mathrm{H}$, dd, $9-\mathrm{H}), 5.12$ $(1 \mathrm{H}$, brd, $3-\mathrm{H}), 5.57(1 \mathrm{H}, \mathrm{dd}, 10-\mathrm{H}), 5.88(1 \mathrm{H}$, ddd, $13-\mathrm{H}), 6.09(1 \mathrm{H}$, br dd, $12-\mathrm{H}), 6.74(1 \mathrm{H}, \mathrm{dd}, 11-\mathrm{H}), 9.65$ ($1 \mathrm{H}, \mathrm{brs}, 18-\mathrm{H}$).

3"-O-Methyl-9-O-propionylmidecamycin A_{1} (10a) from 8a

Reaction of 8a with propionyl chloride gave 10a as a colorless solid in 78% yield by a similar procedure to $\mathbf{9 a}$ from 8a.

10a: MP $114 \sim 117^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{22}-72^{\circ}(c 1.0, \mathrm{MeOH})$; EI-MS $m / z 883\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.90(1 \mathrm{H}$, br ddd, $7-\mathrm{H})$, $0.96(3 \mathrm{H}, \mathrm{d}, 19-\mathrm{H}), 1.08\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.10(3 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.11\left(3 \mathrm{H}, \mathrm{t}, 9-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.16(3 \mathrm{H}, \mathrm{d}$, $\left.6^{\prime}-\mathrm{H}\right), 1.17\left(3 \mathrm{H}, \mathrm{t}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.21(3 \mathrm{H}, \mathrm{t}$, $\left.3-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.26(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H}), 1.57(1 \mathrm{H}, \mathrm{brdt}$, $7-\mathrm{H}), 1.67\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime \prime}-\mathrm{Hax}\right), 2.02(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.17(1 \mathrm{H}$, $\mathrm{dt}, 14-\mathrm{H}), 2.26(1 \mathrm{H}$, brd, $2-\mathrm{H}), 2.29\left(1 \mathrm{H}, \mathrm{d}, 2^{\prime \prime}-\mathrm{Heq}\right)$, $2.30\left(2 \mathrm{H}, \mathrm{q}, 9-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.43$ and $2.44(2 \mathrm{H}, 2 \times \mathrm{q}$, $\left.4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.51$ and $2.68(2 \mathrm{H}, 2 \times \mathrm{dq}, 3-$ $\left.\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.58\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.60(1 \mathrm{H}$, brdd, $17-\mathrm{H}), 2.74(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 2.83(1 \mathrm{H}$, brdd, $17-\mathrm{H})$,
$3.21\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 3.24(1 \mathrm{H}$, br d, $4-\mathrm{H}), 3.28(1 \mathrm{H}, \mathrm{dq}$, $\left.5^{\prime}-\mathrm{H}\right), 3.26\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{OCH}_{3}\right), 3.45\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right), 3.56$ $\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right), 3.94(1 \mathrm{H}$, brd, $5-\mathrm{H}), 4.51\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right)$, $4.53\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime \prime}-\mathrm{H}\right), 4.72\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{H}\right), 4.93(1 \mathrm{H}, \mathrm{d}$, $\left.1^{\prime \prime}-\mathrm{H}\right), 4.98(1 \mathrm{H}, \mathrm{ddq}, 15-\mathrm{H}), 5.09(1 \mathrm{H}, \mathrm{dd}, 9-\mathrm{H}), 5.12$ $(1 \mathrm{H}$, br d, $3-\mathrm{H}), 5.58(1 \mathrm{H}$, dd, $10-\mathrm{H}), 5.88(1 \mathrm{H}$, ddd, $13-\mathrm{H}), 6.09(1 \mathrm{H}$, br dd, $12-\mathrm{H}), 6.74(1 \mathrm{H}, \mathrm{dd}, 11-\mathrm{H}), 9.65$ ($1 \mathrm{H}, \mathrm{br}$ s, $18-\mathrm{H}$).

9,2'-Di-O-acetyl-3"-O-(methylthiomethyl)josamycin (13b)

Reaction of $\mathbf{1 1 b}^{\mathbf{2 2 \gamma}}$ with DMSO gave 13b as a colorless solid in 66% yield by a similar procedure to $\mathbf{5 a}$.

13b: MP $118 \sim 122^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{24}-85^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$; SI-MS m/z $972\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.85(1 \mathrm{H}, \mathrm{brddd}$, $7-\mathrm{H}), 0.96(3 \mathrm{H}, \mathrm{d}, 19-\mathrm{H}), 0.98\left(6 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}-\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 1.05\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.14\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right), 1.18(3 \mathrm{H}$, s, $\left.3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.26(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H}), 1.46(1 \mathrm{H}, \mathrm{brdt}, 7-\mathrm{H})$, $1.68\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime \prime}-\mathrm{Hax}\right), 2.00\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{OCOCH}_{3}\right), 2.00$ $\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{OCOCH}_{3}\right), 2.20\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 2.25$ $(1 \mathrm{H}$, brd, $2-\mathrm{H}), 2.30\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OCOCH}_{3}\right), 2.42(6 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.45(1 \mathrm{H}$, br dt, $14-\mathrm{H}), 2.55(1 \mathrm{H}$, br dd, $17-\mathrm{H}), 2.68\left(1 \mathrm{H}, \mathrm{t}, 3^{\prime}-\mathrm{H}\right), 2.72(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 2.81(1 \mathrm{H}$, brd, $17-\mathrm{H}), 3.16(1 \mathrm{H}$, brd, $4-\mathrm{H}), 3.16\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right), 3.26$ $\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime}-\mathrm{H}\right), 3.50\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right), 3.94(1 \mathrm{H}$, brd, $5-\mathrm{H}), 4.50$ and $4.64\left(2 \mathrm{H}, 2 \times \mathrm{d}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 4.56(1 \mathrm{H}$, dq, $\left.5^{\prime \prime}-\mathrm{H}\right), 4.59\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 4.63\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{H}\right), 4.81$ $\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right), 4.91\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 4.99(1 \mathrm{H}, \mathrm{ddq}, 15-\mathrm{H})$, $5.05(1 \mathrm{H}, \mathrm{dd}, 9-\mathrm{H}), 5.09(1 \mathrm{H}$, br d, $3-\mathrm{H}), 5.56(1 \mathrm{H}, \mathrm{dd}$, $10-\mathrm{H}), 5.85(1 \mathrm{H}$, ddd, $13-\mathrm{H}), 6.05(1 \mathrm{H}$, br dd, $12-\mathrm{H}), 6.70$ $(1 \mathrm{H}, \mathrm{dd}, 11-\mathrm{H}), 9.63(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 18-\mathrm{H})$.

2'-O-Acetyl-3"-O-(methylthiomethyl)-9-O-propionylmidecamycin A_{1} (14a)

Reaction of $\mathbf{1 2 a}$ with DMSO gave $\mathbf{1 4 a}$ as a colorless solid in 57% yield by a similar procedure to $\mathbf{5 a}$.

14a: MP $97 \sim 100^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{28}-81^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$; FAB-MS $m / z 930\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.86(1 \mathrm{H}$, br ddd, $7-\mathrm{H}), 0.96(3 \mathrm{H}, \mathrm{d}, 19-\mathrm{H}), 1.05\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.11(3 \mathrm{H}$, $\left.\mathrm{t}, 9-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.14\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right), 1.17(3 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.18\left(3 \mathrm{H}, \mathrm{t}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.21(3 \mathrm{H}, \mathrm{t}$, $\left.3-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.26(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H}), 1.45(1 \mathrm{H}, \mathrm{brdt}$, $7-\mathrm{H}), 1.68\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime \prime}\right.$-Hax), $2.01\left(3 \mathrm{H}, \mathrm{s}, 2^{\prime}-\mathrm{OCOCH}_{3}\right)$, $2.16(1 \mathrm{H}, \mathrm{dt}, 14-\mathrm{H}), 2.20\left(3 \mathrm{H}, \mathrm{s}, 3\right.$ " $\left.-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 2.24$ $(1 \mathrm{H}, \mathrm{brd}, 2-\mathrm{H}), 2.26\left(1 \mathrm{H}, \mathrm{d}, 2^{\prime \prime}-\mathrm{Heq}\right), 2.29(2 \mathrm{H}, \mathrm{q}$, $9-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}$), $2.42\left(2 \mathrm{H}, \mathrm{q}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.42$ $\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.51$ and $2.69(2 \mathrm{H}, 2 \times \mathrm{dq}, 3-$ $\left.\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.56(1 \mathrm{H}$, br dd, $17-\mathrm{H}), 2.71(1 \mathrm{H}, \mathrm{dd}$, $2-\mathrm{H}), 2.80(1 \mathrm{H}$, brdd, $17-\mathrm{H}), 3.15(1 \mathrm{H}$, brdd, $4-\mathrm{H}), 3.15$ $\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right), 3.26\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime}-\mathrm{H}\right), 3.49\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right)$, $3.92(1 \mathrm{H}$, br d, $5-\mathrm{H}), 4.51\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 4.56$ $\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime \prime}-\mathrm{H}\right), 4.59\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 4.63\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{H}\right)$, $4.65\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 4.81\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right), 4.90$ $\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 4.96(1 \mathrm{H}, \mathrm{ddq}, 15-\mathrm{H}), 5.07(1 \mathrm{H}, \mathrm{dd}, 9-\mathrm{H})$, $5.10(1 \mathrm{H}$, br d, $3-\mathrm{H}), 5.57(1 \mathrm{H}, \mathrm{dd}, 10-\mathrm{H}), 5.88(1 \mathrm{H}$, ddd, $13-\mathrm{H}), 6.05(1 \mathrm{H}, \mathrm{brdd}, 12-\mathrm{H}), 6.12(1 \mathrm{H}, \mathrm{dd}, 11-\mathrm{H}), 9.63$ ($1 \mathrm{H}, \mathrm{brs}, 18-\mathrm{H}$).
$2^{\prime}-O$-Acetyl-3"-O-(methylthiomethyl)-9-O-propionyljosamycin (14b)
Reaction of $\mathbf{1 2} \mathbf{b}^{23}$) with DMSO gave $\mathbf{1 4 b}$ as a colorless solid in 47% yield by a similar procedure to $\mathbf{5 a}$.

14b: MP $114 \sim 116^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{16}-90^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$; SI-MS $m / z 986\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.85(1 \mathrm{H}, \mathrm{brdt}, 7-\mathrm{H})$, $0.95(3 \mathrm{H}, \mathrm{d}, 19-\mathrm{H}), 0.98\left(6 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.05\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.10\left(3 \mathrm{H}, \mathrm{t}, 9-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.14$ $\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right), 1.18\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.26(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H})$, $1.46(1 \mathrm{H}$, br dt, $7-\mathrm{H}), 1.68\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime \prime}-\mathrm{Hax}\right), 2.01(3 \mathrm{H}$, $\left.\mathrm{s}, 2^{\prime}-\mathrm{OCOCH}_{3}\right), 2.20\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 2.25(1 \mathrm{H}$, brd, $2-\mathrm{H}), 2.30\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OCOCH}_{3}\right), 2.42(6 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.45(1 \mathrm{H}$, brdt, $14-\mathrm{H}), 2.58(1 \mathrm{H}$, brdd, $17-\mathrm{H}), 2.67\left(1 \mathrm{H}, \mathrm{t}, 3^{\prime}-\mathrm{H}\right), 2.71(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 2.82(1 \mathrm{H}$, brdd, $17-\mathrm{H}), 3.16(1 \mathrm{H}, \mathrm{br}$ d, $4-\mathrm{H}), 3.16\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right), 3.26$ $\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime}-\mathrm{H}\right), 3.49\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right), 3.94(1 \mathrm{H}$, brd, $5-\mathrm{H}), 4.50\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 4.56\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime \prime}-\mathrm{H}\right)$, $4.59\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 4.63,4.64\left(2 \mathrm{H}, 2 \times \mathrm{d}, 4^{\prime \prime}-\mathrm{H}\right.$, $\left.3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 4.81\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right), 4.90\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right)$, $4.98(1 \mathrm{H}, \mathrm{ddq}, 15-\mathrm{H}), 5.05(1 \mathrm{H}, \mathrm{dd}, 9-\mathrm{H}), 5.09(1 \mathrm{H}$, br d, $3-\mathrm{H}), 5.57(1 \mathrm{H}, \mathrm{dd}, 10-\mathrm{H}), 5.85(1 \mathrm{H}$, ddd, $13-\mathrm{H}), 6.05$ $(1 \mathrm{H}$, br dd, $12-\mathrm{H}), 6.69(1 \mathrm{H}, \mathrm{dd}, 11-\mathrm{H}), 9.64(1 \mathrm{H}, \mathrm{s}, 18-\mathrm{H})$.

9-O-Acetyl-3"-O-(methylthiomethyl)josamycin (15b)
Reaction of 13b with MeOH gave 15b as a colorless solid in 88% yield by a similar procedure to $\mathbf{6 a}$.

15b: MP $115 \sim 118^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{24}-77^{\circ}(c 1.0, \mathrm{MeOH})$; SI-MS m/z $930\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.93(1 \mathrm{H}$, br ddd, $7-\mathrm{H}), 0.96(3 \mathrm{H}, \mathrm{d}, 19-\mathrm{H}), 0.98\left(6 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}-\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 1.08\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.15\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right), 1.20(3 \mathrm{H}$, s, $\left.3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.27(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H}), 1.57(1 \mathrm{H}, \mathrm{brdt}, 7-\mathrm{H})$, $1.74\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime \prime}-\mathrm{Hax}\right), 2.01\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{OCOCH}_{3}\right), 2.18$ $\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 2.27(1 \mathrm{H}$, br d, $2-\mathrm{H}), 2.29(3 \mathrm{H}$, $\left.\mathrm{s}, 3-\mathrm{OCOCH}_{3}\right), 2.42\left(1 \mathrm{H}, \mathrm{t}, 3^{\prime}-\mathrm{H}\right), 2.47(1 \mathrm{H}, \mathrm{br} \mathrm{dt}, 14-\mathrm{H})$, $2.58\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.59(1 \mathrm{H}$, br dd, $17-\mathrm{H}), 2.75$ $(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 2.84(1 \mathrm{H}, \mathrm{br} d d, 17-\mathrm{H}), 3.21\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right)$, $3.25(1 \mathrm{H}, \mathrm{brd}, 4-\mathrm{H}), 3.28\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime}-\mathrm{H}\right), 3.42(1 \mathrm{H}, \mathrm{t}$, $\left.4^{\prime}-\mathrm{H}\right), 3.57\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right), 3.96(1 \mathrm{H}$, br d, $5-\mathrm{H}), 4.50$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{l}^{\prime}-\mathrm{H}\right), 4.52$ and $4.65\left(2 \mathrm{H}, 2 \times \mathrm{d}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right)$, $4.56\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime \prime}-\mathrm{H}\right), 4.66\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{H}\right), 4.92(1 \mathrm{H}, \mathrm{d}$, $\left.1^{\prime \prime}-\mathrm{H}\right), 4.97(1 \mathrm{H}, \mathrm{dd}, 9-\mathrm{H}), 5.00(1 \mathrm{H}$, brd, $3-\mathrm{H}), 5.00(1 \mathrm{H}$, ddq, $15-\mathrm{H}), 5.57(1 \mathrm{H}, \mathrm{dd}, 10-\mathrm{H}), 5.86(1 \mathrm{H}$, ddd, $13-\mathrm{H})$, $6.09(1 \mathrm{H}, \operatorname{brdd}, 12-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{dd}, 11-\mathrm{H}), 9.66(1 \mathrm{H}$, brs, $18-\mathrm{H})$.

3"-O-(Methylthiomethyl)-9-O-propionylmidecamycin A_{1} (16a)

Reaction of $\mathbf{1 4 a}$ with MeOH gave 16a as a colorless solid in 96% yield by a similar procedure to $\mathbf{6 a}$.

16a: MP $113 \sim 117^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{28}-66^{\circ}(c, 1.0, \mathrm{MeOH})$; FAB-MS $m / z 972\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.94(1 \mathrm{H}, \mathrm{br} \mathrm{ddd}$, $7-\mathrm{H}), 0.95(3 \mathrm{H}, \mathrm{d}, 19-\mathrm{H}), 1.08\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.11(3 \mathrm{H}$, $\left.\mathrm{t}, 9-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.15\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right), 1.19(3 \mathrm{H}, \mathrm{t}$, $\left.4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.20\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.21(3 \mathrm{H}, \mathrm{t}$, $\left.3-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.26(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H}), 1.56(1 \mathrm{H}, \mathrm{brdt}$, $7-\mathrm{H}), 1.75$ (1 H , dd, $2^{\prime \prime}$-Hax), 2.17 ($1 \mathrm{H}, \mathrm{dt}, 14-\mathrm{H}$), 2.19 $\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 2.26(1 \mathrm{H}$, br d, $2-\mathrm{H}), 2.28(1 \mathrm{H}$, d, $\left.2^{\prime \prime}-\mathrm{Heq}\right), 2.29\left(2 \mathrm{H}, \mathrm{q}, 9-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.42(2 \mathrm{H}, \mathrm{q}$,
$\left.4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.51$ and $2.68(2 \mathrm{H}, 2 \times \mathrm{dq}, 3-$ $\left.\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 2.58\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.61(1 \mathrm{H}$, brdd, $17-\mathrm{H}), 2.74(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 2.82(1 \mathrm{H}, \mathrm{brdd}, 17-\mathrm{H})$, $3.22\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime}-\mathrm{H}\right), 3.25(1 \mathrm{H}$, brdd, $4-\mathrm{H}), 3.27(1 \mathrm{H}$, dq, $\left.5^{\prime}-\mathrm{H}\right), 3.41\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right), 3.56\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right)$, $3.93(1 \mathrm{H}$, brd, $5-\mathrm{H}), 4.49\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 4.52(1 \mathrm{H}, \mathrm{d}$, $\left.3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 4.55\left(1 \mathrm{H}, \mathrm{dq}, 5{ }^{\prime \prime}-\mathrm{H}\right), 4.65(1 \mathrm{H}, \mathrm{d}$, $\left.3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 4.66\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{H}\right), 4.92\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right)$, $4.98(1 \mathrm{H}, \mathrm{ddq}, 15-\mathrm{H}), 5.09(1 \mathrm{H}, \mathrm{dd}, 9-\mathrm{H}), 5.12(1 \mathrm{H}$, br d, $3-\mathrm{H}), 5.58(1 \mathrm{H}, \mathrm{dd}, 10-\mathrm{H}), 5.88(1 \mathrm{H}$, ddd, $13-\mathrm{H}), 6.09$ $(1 \mathrm{H}, \mathrm{br} d d, 12-\mathrm{H}), 6.74(1 \mathrm{H}, \mathrm{dd}, 11-\mathrm{H}), 9.65(1 \mathrm{H}, \mathrm{brs}$, $18-\mathrm{H})$.

3"-O-(Methylthiomethyl)-9-O-propionyljosamycin (16b)

Reaction of $\mathbf{1 4 b}$ with MeOH gave $\mathbf{1 6 b}$ as a colorless solid in 92% yield by a similar procedure to $\mathbf{6 a}$.

16b: MP $113 \sim 116^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{16}-58^{\circ}$ (c $\left.1.0, \mathrm{MeOH}\right)$; SI-MS $m / z 944\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.92(1 \mathrm{H}, \mathrm{brdt}, 7-\mathrm{H})$, $0.95(3 \mathrm{H}, \mathrm{d}, 19-\mathrm{H}), 0.98\left(6 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.08\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.10\left(3 \mathrm{H}, \mathrm{t}, 9-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.15$ $\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right), 1.20\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.26(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H})$, $1.57(1 \mathrm{H}, \mathrm{brdt}, 7-\mathrm{H}), 1.74\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime \prime}-\mathrm{Hax}\right), 2.03(1 \mathrm{H}$, $\left.\mathrm{m}, 8-\mathrm{H}), 2.19\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}\right)_{3}\right), 2.26(1 \mathrm{H}$, br d, $2-\mathrm{H}), 2.29\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OCOCH}_{3}\right), 2.42\left(1 \mathrm{H}, \mathrm{t}, 3^{\prime}-\mathrm{H}\right), 2.46$ $(1 \mathrm{H}$, brdt, $14-\mathrm{H}), 2.57\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.62(1 \mathrm{H}$, br dd, $17-\mathrm{H}), 2.75(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 2.84(1 \mathrm{H}$, brdd, $17-\mathrm{H})$, $3.21\left(1 \mathrm{H}\right.$, dd, $\left.2^{\prime}-\mathrm{H}\right), 3.25(1 \mathrm{H}$, brd, $4-\mathrm{H}), 3.28(1 \mathrm{H}$, dq, $\left.5^{\prime}-\mathrm{H}\right), 3.42\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right), 3.57\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right), 3.96$ $(1 \mathrm{H}$, brd, $5-\mathrm{H}), 4.49\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 4.52\left(1 \mathrm{H}, \mathrm{d}, 3^{\prime \prime}-\right.$ $\left.\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 4.55\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime \prime}-\mathrm{H}\right), 4.64,4.66(2 \mathrm{H}, 2 \times \mathrm{d}$, $\left.4^{\prime \prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{OCH}_{2} \mathrm{SCH}_{3}\right), 4.92\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right), 5.00(1 \mathrm{H}, \mathrm{ddq}$, $15-\mathrm{H}), 5.07(1 \mathrm{H}, \mathrm{dd}, 9-\mathrm{H}), 5.10(1 \mathrm{H}$, br d, $3-\mathrm{H}), 5.58(1 \mathrm{H}$, dd, $10-\mathrm{H}), 5.86(1 \mathrm{H}$, ddd, $13-\mathrm{H}), 6.09(1 \mathrm{H}$, br dd, $12-\mathrm{H})$, $6.71(1 \mathrm{H}, \mathrm{dd}, 11-\mathrm{H}), 9.66(1 \mathrm{H}, \mathrm{s}, 18-\mathrm{H})$.

9-O-Acetyl-3"-O-methylmidecamycin A_{1} (9a) from 15a

Reaction of $\mathbf{1 5 a}^{14)}$ with Raney-Nickel gave $\mathbf{9 a}$ as colorless needles in 67% yield by a similar procedure to 7 .

9-O-Acetyl-3"-O-methyljosamycin (9b)

Reaction of 15b with Raney-Nickel gave 9b as a colorless solid in 53% yield by a similar procedure to $7 \mathbf{a}$.

9b: MP $115 \sim 119^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{26}-74^{\circ}(c 1.0, \mathrm{MeOH})$; SI-MS $m / z 884\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.92(1 \mathrm{H}$, br ddd, $7-\mathrm{H}), 0.96$ ($3 \mathrm{H}, \mathrm{d}, 19-\mathrm{H}$), $0.97\left(6 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.08$ $\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.11\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.16\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right)$, $1.26(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H}), 1.58(1 \mathrm{H}$, brdt, $7-\mathrm{H}), 1.67(1 \mathrm{H}$, dd, $2^{\prime \prime}$-Hax), $2.01\left(3 \mathrm{H}, \mathrm{s}, 9-\mathrm{OCOCH}_{3}\right), 2.29(3 \mathrm{H}, \mathrm{s}$, $\left.3-\mathrm{OCOCH}_{3}\right), 2.42\left(1 \mathrm{H}, \mathrm{t}, 3^{\prime}-\mathrm{H}\right), 2.58\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.59(1 \mathrm{H}$, br dd, $17-\mathrm{H}), 2.75(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 2.84(1 \mathrm{H}$, br dd, $17-\mathrm{H}), 3.19\left(1 \mathrm{H}\right.$, dd, $\left.2^{\prime}-\mathrm{H}\right), 3.25(1 \mathrm{H}$, brd, $4-\mathrm{H})$, $3.26\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{OCH}_{3}\right), 3.29\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime}-\mathrm{H}\right), 3.46(1 \mathrm{H}, \mathrm{t}$, $\left.4^{\prime}-\mathrm{H}\right), 3.57\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right), 3.96(1 \mathrm{H}$, br d, $5-\mathrm{H}), 4.51$ $\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 4.54\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime \prime}-\mathrm{H}\right), 4.72\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{H}\right)$, $4.93\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right), 4.99(1 \mathrm{H}, \mathrm{ddq}, 15-\mathrm{H}), 5.06(1 \mathrm{H}, \mathrm{dd}$,
$9-\mathrm{H}), 5.12(1 \mathrm{H}, \mathrm{br}$ d, $3-\mathrm{H}), 5.57(1 \mathrm{H}$, dd, $10-\mathrm{H}), 5.86(1 \mathrm{H}$, ddd, $13-\mathrm{H}), 6.09(1 \mathrm{H}$, br dd, $12-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{dd}, 11-\mathrm{H})$, $9.66(1 \mathrm{H}$, br s, $18-\mathrm{H})$.

3"-O-Methyl-9-O-propionylmidecamycin A_{1} (10a)

 from 16aReaction of 16a with Raney-Nickel gave 10a as a colorless solid in 35% yield by a similar procedure to $7 \mathbf{7}$.

3"-O-Methyl-9-O-propionyljosamycin (10b)

Reaction of 16b with Raney-Nickel gave 10b as a colorless solid in 39% yield by a similar procedure to $7 \mathbf{a}$.

10b: MP $115 \sim 118^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{15}-61^{\circ}(c 1.0, \mathrm{MeOH})$; SI-MS $m / z 898\left(\mathrm{MH}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.92(1 \mathrm{H}, \mathrm{brdt}, 7-\mathrm{H})$, $0.95(3 \mathrm{H}, \mathrm{d}, 19-\mathrm{H}), 0.97\left(6 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{OCOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.08\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime \prime}-\mathrm{H}\right), 1.11\left(3 \mathrm{H}, \mathrm{t}, 9-\mathrm{OCOCH}_{2} \mathrm{CH}_{3}\right), 1.11$ $\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{CH}_{3}\right), 1.16\left(3 \mathrm{H}, \mathrm{d}, 6^{\prime}-\mathrm{H}\right), 1.26(3 \mathrm{H}, \mathrm{d}, 16-\mathrm{H})$, $1.58(1 \mathrm{H}, \mathrm{brdt}, 7-\mathrm{H}), 1.67\left(1 \mathrm{H}, \mathrm{dd}, 2^{\prime \prime}-\mathrm{Hax}\right), 2.03(1 \mathrm{H}$, $\mathrm{m}, 8-\mathrm{H}), 2.17(1 \mathrm{H}, \mathrm{dt}, 14-\mathrm{H}), 2.26(1 \mathrm{H}$, br d, $2-\mathrm{H}), 2.29$ $\left(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OCOCH}_{3}\right), 2.41\left(1 \mathrm{H}, \mathrm{t}, 3^{\prime}-\mathrm{H}\right), 2.46(1 \mathrm{H}, \mathrm{brdt}$, $14-\mathrm{H}), 2.57\left(6 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.62(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, 17-\mathrm{H})$, $2.75(1 \mathrm{H}, \mathrm{dd}, 2-\mathrm{H}), 2.85(1 \mathrm{H}, \mathrm{br}$ dd, $17-\mathrm{H}), 3.19(1 \mathrm{H}, \mathrm{dd}$, $\left.2^{\prime}-\mathrm{H}\right), 3.24(1 \mathrm{H}$, brd, $4-\mathrm{H}), 3.26\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{OCH}_{3}\right), 3.29$ $\left(1 \mathrm{H}, \mathrm{dq}, 5^{\prime}-\mathrm{H}\right), 3.45\left(1 \mathrm{H}, \mathrm{t}, 4^{\prime}-\mathrm{H}\right), 3.58\left(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OCH}_{3}\right)$, $3.96(1 \mathrm{H}, \operatorname{brd}, 5-\mathrm{H}), 4.51\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime}-\mathrm{H}\right), 4.54(1 \mathrm{H}, \mathrm{dq}$, $\left.5^{\prime \prime}-\mathrm{H}\right), 4.73\left(1 \mathrm{H}, \mathrm{d}, 4^{\prime \prime}-\mathrm{H}\right), 4.93\left(1 \mathrm{H}, \mathrm{d}, 1^{\prime \prime}-\mathrm{H}\right), 5.00(1 \mathrm{H}$, ddq, $15-\mathrm{H}), 5.07(1 \mathrm{H}, \mathrm{dd}, 9-\mathrm{H}), 5.11(1 \mathrm{H}$, br d, $3-\mathrm{H}), 5.58$ $(1 \mathrm{H}, \mathrm{dd}, 10-\mathrm{H}), 5.86(1 \mathrm{H}$, ddd, $13-\mathrm{H}), 6.09(1 \mathrm{H}$, br dd, $12-\mathrm{H}), 6.71(1 \mathrm{H}, \mathrm{dd}, 11-\mathrm{H}), 9.66(1 \mathrm{H}, \mathrm{s}, 18-\mathrm{H})$.

Acknowledgments

We wish to thank Drs. Y. Ohtsuka and T. Usui for valuable discussions and encouragement during this study. We are grateful to Mr. Y. Akiyama for synthetic information. We are also grateful to Mrs. K. Tohyama and Miss M. Iida for biological studies.

References

1) Ōmura, S. (Ed.): Macrolide Antibiotics. Chemistry, Biology, and Practice. Academic Press Inc., 1984
2) Sakakibara, H.; O. Okekawa, T. Fujiwara, M. Aizawa \& S. Ōmura: Acyl derivatives of 16 -membered macrolides. II. Antibacterial activities and serum levels of $3^{\prime \prime}-O$-acyl derivatives of leucomycin. J. Antibiotics 34: 1001~1010, 1981
3) Оmoto, S.; K. Iwamatsu, S. Inouye \& T. Niida: Modifications of a macrolide antibiotic midecamycin (SF-837). I. Synthesis and structure of $9,3{ }^{\prime \prime}$-diacetylmidecamycin. J. Antibiotics 29: 536~548, 1976
4) Takeuchi, T.; T. Sawa, H. Naganawa, M. Hamada, H. Umezawa, T. Yoshioka, K. Kiyoshima, H. Iguchi, M. Sakamoto, Y. Shimauchi, H . Tone, Y. Fukagawa \& T. Ishikura: 4"-O-(4-Methoxyphenyl)-acetyltylosin, a new macrolide derivative of therapeutic importance. J. Antibiotics 40: 1358~1360, 1987
5) Kageyama, S.; T. Tsuchiya, S. Umezawa \& T. Takeuchi: Synthesis of 3, 4^{\prime}-dideoxymycaminosyl tylonolide, a novel type of macrolide derivative. J. Antibiotics 45: 144~146, 1992
6) Kurihara, K.; K. Aito, S. Shibahara, T. Ishizuka, O. Hara, M. Araake \& S. Оmoto: Cladinose analogues of sixteen-membered macrolide antibiotics. I. Synthesis of 4-O-alkyl-L-cladinose analogues via glycosylation. J. Antibiotics 49: 582~592, 1996
7) Aitto, K.; K. Kurihara, S. Shibahara, O. Hara, A. Shimizu, M. Araake \& S. Оmoto: Cladinose analogues of sixteen-membered macrolide antibiotics. II. Preparation of pharmacokinetically improved analogues via biotransformations. J. Antibiotics 50: 92~95, 1997
8) Kurihara, K.; N. Kikuchi \& K. Aitio: Cladinose analogues of sixteen-membered macrolide antibiotics. III. Efficient synthesis of $4-\mathrm{O}$-alkyl-L-cladinose analogues improved antibacterial activities compatible with pharmacokinetics. J. Antibiotics 50: 32~44, 1997
9) Tatsuta, K.; A. Tanaka, M. Kinoshita \& S. Umezawa: Synthesis of cladinose analogues of carbomycin B. Chem. Lett. 1977: 769~772, 1977
10) Ajito, K.; K. Kurihara, A. Shimizu, M. Araake, O. Hara \& S. Shibahara (Meiji Seika Kaisha, LTD.): Jpn. Kokai 211888 (94), Aug. 2, 1994
11) Aitio, K.; K. Kurihara, A. Shimizu, S. Gomi, N. Kikuchi, M. Araake, T. Ishizuka, A. Miyata, O. Hara \& S. Shibahara (Meiji Seika Kaisha, LTD.): 16Membered macrolide derivatives and process for producing the same. United States Patent 5,407,918, Apr. 18, 1995
12) Sano, H.; T. Sunazuka, H. Tanaka, K. Yamashita, R. Okachi \& S. Ōmura: Chemical modification of spiramycins. III. Synthesis and antibacterial activities of $4^{\prime \prime}$-sulfonates and $4^{\prime \prime}$-alkylethers of spiramycin I. J. Anitibiotics 37: 750~759, 1984
13) Sano, H.; T. Sunazuka, H. Tanaka, K. Yamashita, R. Okachi \& S. Ōmura: Chemical modification of spiramycins. IV. Synthesis and in vitro and in vivo activities of $3^{\prime \prime}, 4^{\prime \prime}$-diacylates and $3,3^{\prime \prime}, 4^{\prime \prime}$-triacylates of spiramycin I. J. Antibiotics 37: 760~772, 1984
14) Inouye, S.; S. Omoto, K. Iwamatsu \& T. Nidda: Modifications of a macrolide antibiotic midecamycin (SF-837). II. Reaction of midecamycin and 9-acetyl midecamycin with sulfoxide and acetic anhydride. J. Antibiotics 33: 61~71, 1979
15) Hughes, N. A.: Further observations on derivatives of 1 , 6 -anhydro- β-D-talopyranose; an example of acetal migration accompanying hydrolysis. Carbohydr. Res. 7: $474 \sim 179,1968$
16) Jewell, J. S. \& W. A. Szarek: The light-induced addition of 1, 3-dioxolan to unsaturated carbohydrates. Tetrahedron Lett. 1969: 43~46, 1969
17) Chittenden, G. J. F.: Oxidation of derivatives of D-galactose with methyl sulphoxide-acid anhydride mixtures: a route to derivatives of D-glucose and D-talose. Carbohydr. Res. 15: 101~109, 1970
18) Omoto, S.; S. Inouye \& T. Nidda: (Meiji Seika Kaisha, LTD.): Jpn. Kokai 13380 (73), Feb. 20, 1973
19) Shomura, T.; S. Someya, K. Umemura, M. Nishio \& S. Murata: Metabolism of $9,3^{\prime \prime}$-diacetylmidecamycin. I. The metabolic fate of $9,3^{\prime \prime}$-diacetylmidecamycin. Yakugaku Zasshi (Japanese) 102: 781~795, 1982
20) Millar, L. C. \& M. L. Tainter: Estimation of the E_{50} and its error by means of logarithmic-probit graph paper. Proc. Soc. Exp. Biol. Med. 57: 261 ~264, 1944
21) Suwa, T.; H. Yoshida, K. Fukushima \& T. Nagate: Metabolic fate of TE-031 (A-56268) (I): Comparative phamacokinetics of TE-031 and erythromycin stearate in rats and mice. Chemotherapy 36: 198~204, 1988
22) Omura, S.; H. Ogura \& T. Hata: The chemistry of the leucomycins. I. Partial structure of leucomycin A_{3}. Tetrahedron Lett. 1967: 609~613, 1967
23) Hata, T.; S. Ömura, M. Katagiri, I. Umezawa, Z. Abe, T. Watanabe, T. Taya \& Y. Satoh: (The Kitasato Institute \& Toyo Jozo Co., LTD.): Jpn. Kokai 10515 (74), Mar. 11, 1974

[^0]: ${ }^{\dagger}$ Present Address, Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260 Japan.

[^1]: ${ }^{\text {a }}$ Reagents and conditions: (a) $\mathrm{H}_{5} \mathrm{C}_{2} \mathrm{OCH}=\mathrm{CH}_{2}, \mathrm{PPTS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 16 \mathrm{~h}$; (b) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{CN}, 40^{\circ} \mathrm{C}, 16 \mathrm{~h}$; (c) $\mathrm{Ac} 2 \mathrm{O}, \mathrm{DMSO}, 33^{\circ} \mathrm{C}, 64 \mathrm{~h}$; (d) MeOH , $30^{\circ} \mathrm{C}, 16 \mathrm{~h}$; (e) deactivated Raney-Nickel, $\mathrm{EtOH}, 25^{\circ} \mathrm{C}, 20 \mathrm{~min}$.; (f) AcOH , aqueous $\mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}, 16 \mathrm{~h}$; (g) AcCl or EtCOCl, Pyr ., $\mathrm{PhMe}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}$. EE: 1-Ethoxyethyl. Midecamycin A_{1} derivatives are represented as suffix "a" compounds; $\mathrm{R}_{1}=\mathrm{R}_{2}=$ COEt.
 Josamycin derivatives are represented as suffix " b " compounds; $\mathrm{R}_{1}=\mathrm{Ac}, \mathrm{R}_{2}=\mathrm{COCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$.

[^2]: ${ }^{\dagger \dagger}$ Some intermediates with a protected aldehyde and a modified lactone ring are available for further reactions. See ref. 12 and 13. A direct methylation at the C-3" position could be done under stronger conditions. See ref. 8 .

